Физиологические особенности формирования цнс в онтогенезе. Развитие нервной системы у детей и подростков. Развитие центральной нервной системы и нервной регуляции функций


Развитие нервной системы в фило- и онтогенезе

Развитие – это качественные изменения в организме, заключающиеся в усложнении его организации, а также их взаимоотношений и процессов регуляции.

Рост – это увеличение длины, объема и массы тела организма в онтогенезе, связанное с увеличением числа клеток и количества составляющих их органических молекул, то есть рост – это количественные изменения.

Рост и развитие, то есть количественные и качественные изменения, тесно взаимосвязаны и обуславливают друг друга.

В филогенезе развитие нервной системы связано как с двигательной активностью, так и со степенью активности ВНД.

1. У простейших одноклеточных способность отвечать на стимулы присуща одной клетке, которая функционирует одновременно как рецептор и как эффектор.

2. Простейший тип функционирования нервной системы – диффузная или сетевидная нервная система. Диффузная нервная система отличается тем, что здесь имеет место изначальная дифференциация нейронов на два вида: нервные клетки, которые воспринимают сигналы внешней среды (рецепторные клетки) и нервные клетки, которые осуществляют передачу нервного импульса на клетки, выполняющие сократительные функции. Эти клетки образуют нервную сеть, которая обеспечивает простые формы поведения (реагирования), дифференциацию продуктов потребления, манипуляции ротовой областью, изменение формы организма, выделение и специфические формы передвижения.

3. От животных с сетевидной нервной системой произошли две ветви животного мира с различным строением нервной системы и различной психикой: одна ветвь вела к образованию червей и членистоногих с ганглиозным типом нервной системы, которая способна обеспечить только врожденное инстинктивное поведение.

4. Вторая ветвь вела к образованию позвоночных с трубчатым типом нервной системы. Трубчатая нервная система функционально обеспечивает достаточно высокую надежность, точность и быстроту реакций организма. Эта нервная система предназначена не только для сохранения наследственно сформированных инстинктов, но и обеспечивает научение, связанное с приобретением и использованием новой прижизненной информации (условно-рефлекторная деятельность, память, активное отражение).

Эволюция диффузной нервной системы сопровождалась процессами централизации и цефализации нервных клеток.

Централизация представляет собой процесс скопления нервных клеток, при котором отдельные нервные клетки и их ансамбли стали выполнять специфические регулятивные функции в центре и образовали центральные нервные узлы.

Цефализация – это процесс развития переднего конца нервной трубки и формирования головного мозга, связанный с тем, что нервные клетки и окончания стали специализироваться на приеме внешних раздражителей и распознавании средовых факторов. Нервные импульсы от внешних раздражителей и воздействий среды оперативно передавались в нервные узлы и центры.

В процессе саморазвития нервная система последовательно проходит критические этапы усложнения и дифференцировки, как в морфологическом, так и в функциональном отношении. Общая тенденция эволюции мозга в онтогенезе и филогенезе осуществляется по универсальной схеме: от диффузных, слабо дифференцированных форм деятельности к более специализированным, локальным формам функционирования.

На основании фактов о связи между процессами онтогенетического развития потомков и филогенеза предков был сформулирован биогенетический закон Мюллера-Геккеля: онтогенетическое (особенно зародышевое) развитие индивида сокращенно и сжато повторяет (рекапитулирует) основные этапы развития всего ряда предковых форм – филогенеза. При этом в большей степени рекапитулируют те признаки, которые развиваются в форме «надстроек» конечных стадий развития, то есть более близких предков, признаки же отдаленных предков в значительной степени редуцируются.

Развитие любой структуры в филогенезе происходило с увеличением предъявляемой нагрузки к органу или системе. Эта же закономерность наблюдается и в онтогенезе.

В пренатальном периоде у человека выделяют четыре характерных стадии развития нервной деятельности мозга:

· Первичные локальные рефлексы – это «критический» период в функциональном развитии нервной системы;

· Первичная генерализация рефлексов в форме быстрых рефлекторных реакций головы, туловища и конечностей;

· Вторичная генерализация рефлексов в виде медленных тонических движений всей мускулатуры тела;

· Специализация рефлексов, выражающаяся в координированных движениях отдельных частей тела.

В постнатальном онтогенезе также отчетливо выступают четыре последовательных стадии развития нервной деятельности:

· Безусловно-рефлекторная адаптация;

· Первичная условно-рефлекторная адаптация (формирование суммационных рефлексов и доминантных приобретенных реакций);

· Вторичная условно-рефлекторная адаптация (образование условных рефлексов на основе ассоциаций – «критический» период), с ярким проявлением ориентировочно-исследовательских рефлексов и игровых реакций, которые стимулируют образование новых условно-рефлекторных связей типа сложных ассоциаций, что является основой для внутривидовых (внутригрупповых) взаимодействий развивающихся организмов;

· Формирование индивидуальных и типологических особенностей нервной системы.

Созревание и развитие ЦНС в онтогенезе происходит по тем же закономерностям, что и развитие других органов и систем организма, в том числе и функциональных систем. Согласно теории П.К.Анохина, функциональная система – это динамическая совокупность различных органов и систем организма, формирующаяся для достижения полезного (приспособительного) результата.

Развитие головного мозга в фило- и онтогенезе идет согласно общим принципам системогенеза и функционирования.

Системогенез – это избирательное созревание и развитие функциональных систем в пренатальном и постнатальном онтогенезе. Системогенез отражает:

· развитие в онтогенезе различных по функции и локализации структурных образований, которые объединяются в полноценную функциональную систему, обеспечивающую новорожденному выживание;

· и процессы формирования и преобразования функциональных систем в ходе жизнедеятельности организма.

Принципы системогенеза:

1. Принцип гетерохронности созревания и развития структур: в онтогенезе раньше созревают и развиваются отделы головного мозга, которые обеспечивают формирование функциональных систем, необходимых для выживания организма и дальнейшего его развития;

2. Принцип минимального обеспечения: Вначале включается минимальное число структур ЦНС и других органов и систем организма. Например, нервный центр формируется и созревает раньше, чем закладывается иннервируемый им субстрат.

3. Принцип фрагментации органов в процессе антенатального онтогенеза: отдельные фрагменты органа развиваются неодновременно. Первыми развиваются те, которые обеспечивают к моменту рождения возможность функционирования некоторой целостной функциональной системы.

Показателем функциональной зрелости ЦНС является миелинизация проводящих путей, от которой зависят скорость проведения возбуждения в нервных волокнах, величина потенциалов покоя и потенциалов действия нервных клеток, точность и скорость двигательных реакций в раннем онтогенезе. Миелинизация различных путей в ЦНС происходит в таком же порядке, в каком они развиваются в филогенезе.

Общее число нейронов в составе ЦНС достигает максимума в первые 20-24 недели антенатального периода и остается относительно постоянным вплоть до зрелого возраста, лишь незначительно уменьшается в период раннего постнатального онтогенеза.

Закладка и развитие нервной системы человека

I. Стадия нервной трубки. Центральный и периферический отделы нервной системы человека развиваются из единого эмбрионального источника – эктодермы. В процессе развития зародыша она закладывается в виде так называемой нервной пластинки. Нервная пластинка состоит из группы высоких, быстро размножающихся клеток. На третьей неделе развития нервная пластинка погружается в нижележащую ткань и принимает форму желобка, края которого приподнимаются над эктодермой в виде нервных валиков. По мере роста зародыша нервный желобок удлиняется и достигает каудального конца зародыша. На 19-ый день начинается процесс смыкания валиков над желобком, в результате чего образуется длинная трубка – нервная трубка. Она располагается под поверхностью эктодермы отдельно от нее. Клетки нервных валиков перераспределяются в один слой, в результате чего образуется ганглиозная пластинка. Из нее формируются все нервные узлы соматической периферической и вегетативной нервной системы. К 24-му дню развития трубка замыкается в головной части, а сутками позже – в каудальной. Клетки нервной трубки носят название медуллобластов. Клетки ганглиозной пластинки называются ганглиобластами. Медуллобласты затем дают начало нейробластам и спонгиобластам. Нейробласты отличаются от нейронов значительно меньшим размером, отсутствием дендритов, синаптических связей и вещества Ниссля в цитоплазме.

II. Стадия мозговых пузырей. В головном конце нервной трубки после ее замыкания очень быстро образуется три расширения – первичные мозговые пузыри. Полости первичных мозговых пузырей сохраняются в мозгу ребенка и взрослого в видоизмененной форме, образуя желудочки мозга и сильвиев водопровод. Существует две стадии мозговых пузырей: стадия трех пузырей и стадия пяти пузырей.

III. Стадия формирования отделов мозга. Сначала образуются передний, средний и ромбовидный мозг. Затем из ромбовидного мозга образуются задний и продолговатый мозг, а из переднего образуются конечный мозг и промежуточный. Конечный мозг включает в себя два полушария и часть базальных ядер.

Нейроны различных отделов нервной системы и даже нейроны в пределах одного центра дифференцируются асинхронно: а) дифференцировка нейронов вегетативной нервной системы значительно отстает от таковой соматической нервной системы; б) дифференцировка симпатических нейронов несколько отстает от развития парасимпатических. Раньше всего созревают продолговатый и спинной мозг, позже развиваются ганглии ствола головного мозга, подкорковые узлы, мозжечок и кора больших полушарий.

Развитие отдельных областей мозга

1. Продолговатый мозг. На начальных этапах формирования продолговатый мозг имеет сходство со спинным мозгом. Затем в продолговатом мозге начинают развиваться ядра черепных нервов. Количество клеток в продолговатом мозге начинает уменьшаться, но их размеры увеличиваются. У новорожденного ребенка продолжается процесс уменьшения количества нейронов и увеличение из размеров. Вместе с этим увеличивается дифференцировка нейронов. У полуторагодовалого ребенка клетки продолговатого мозга организованы в четко определяемые ядра и имеют почти все признаки дифференцировки. У ребенка 7 лет нейроны продолговатого мозга неотличимы от нейронов взрослого даже по тонким морфологическим признакам.

2. Задний мозг включает в себя мост и мозжечок. Мозжечок частично развивается из клеток крыловидной пластинки заднего мозга. Клетки пластинки мигрируют и постепенно образуют все отделы мозжечка. К концу 3-его месяца клетки-зерна мигрируя, начинают преобразовываться в грушевидные клетки коры мозжечка. На 4-ом месяце внутриутробного развития появляются клетки Пуркинье. Параллельно и чуть отставая от развития клеток Пуркинье идет формирование борозд коры мозжечка. У новорожденного мозжечок лежит выше, чем у взрослого. Борозды неглубокие, слабо обрисовано древо жизни. С ростом ребенка борозды становятся глубже. До трехмесячного возраста в коре мозжечка сохраняется зародышевый слой. В возрасте от 3 месяцев до 1 года происходит активная дифференцировка мозжечка: увеличение синапсов грушевидных клеток, увеличение диаметра волокон в белом веществе, интенсивный рост молекулярного слоя коры. Дифференцировка мозжечка происходит и в более поздние сроки, что объясняется развитием двигательных навыков.

3. Средний мозг, так же как и спинной, имеет крыловидную и базальную пластинки. Из базальной пластинки к концу 3-го месяца пренатального периода развивается одно ядро глазодвигательного нерва. Крыловидная пластинка дает начало ядрам четверохолмия. Во второй половине внутриутробного развития появляются основания ножек мозга и сильвиев водопровод.

4. Промежуточный мозг образуется из переднего мозгового пузыря. В результате неравномерной пролиферации клеток образуются таламусы и гипоталамус.

5. Конечный мозг также развивается из переднего мозгового пузыря. Пузыри конечного мозга, разрастаясь за короткий промежуток времени, покрывают собой промежуточный мозг, затем средний мозг и мозжечок. Наружная часть стенки мозговых пузырей растет значительно быстрее внутренней. В начале 2-го месяца пренатального периода конечный мозг представлен нейробластами. С 3-его месяца внутриутробного развития начинается закладка коры в виде узкой полоски густо расположенных клеток. Затем идет дифференцировка: образуются слои и дифференцируются клеточные элементы. Основными морфологическими проявлениями дифференцировки нейронов коры большого мозга являются прогрессивный рост количества и ветвлений дендритов, коллатералей аксонов и, соответственно, увеличение и усложнение межнейронных связей. К 3-ему месяцу образуется мозолистое тело. С 5-го месяца внутриутробного развития в коре уже видна цитоархитектоника. К середине 6-го месяца неокортекс имеет 6 нечетко разделенных слоев. II и III слои имеют между собой четкую границу только после рождения. У плода и новорожденного нервные клетки в коре лежат сравнительно близко друг от друга, причем часть из них располагается в белом веществе. По мере роста ребенка концентрация клеток снижается. Мозг новорожденного имеет большую относительную массу – 10% от общей массы тела. К концу полового созревания его масса составляет всего около 2% от массы тела. Абсолютная же масса мозга с возрастом увеличивается. Мозг новорожденного незрелый, причем кора больших полушарий является наименее зрелым отделом нервной системы. Основные функции регулирования различных физиологических процессов выполняют промежуточный и средний мозг. После рождения масса мозга увеличивается в основном за счет роста тел нейронов, происходит дальнейшее формирование ядер головного мозга. Их форма меняется мало, однако размеры и состав их, а также топография относительно друг друга претерпевают достаточно заметные изменения. Процессы развития коры заключаются, с одной стороны, в образовании ее шести слоев, а с другой – в дифференцировке нервных клеток, характерных для каждого коркового слоя. Образование шестислойной коры заканчивается к моменту рождения. В то же время дифференцировка нервных клеток отдельных слоев к этому времени еще остается не завершенной. Наиболее интенсивны дифференциация клеток и миелинизация аксонов в первые два года постнатальной жизни. К 2-летнему возрасту заканчивается формирование пирамидных клеток коры. Установлено, что именно первые 2-3 года жизни ребенка являются наиболее ответственными этапами морфологического и функционального становления мозга ребенка. К 4-7 годам клетки большинства областей коры становятся близкими по строению клеткам коры взрослого человека. Полностью развитие клеточных структур коры полушарий большого мозга заканчивается только к 10-12 годам. Морфологическое созревание отдельных областей коры, связанных с деятельностью различных анализаторов, идет неодновременно. Раньше других созревают корковые концы обонятельного анализатора, находящиеся в древней, старой и межуточной коре. В новой коре прежде всего развиваются корковые концы двигательного и кожного анализаторов, а также лимбическая область, связанная с интерорецепторами, и инсулярная область, имеющая отношение к обонятельной и речедвигательной функциям. Затем дифференцируются корковые концы слухового и зрительного анализаторов и верхняя теменная область, связанная с кожным анализатором. Наконец, в последнюю очередь достигают полной зрелости структуры лобной и нижней теменной областей и височно-теменно-затылочной подобласти.

Миелинизация нервных волокон необходима:

1) для уменьшения проницаемости клеточных мембран,

2) совершенствования ионных каналов,

3) увеличения потенциала покоя,

4) увеличения потенциала действия,

5) повышения возбудимости нейронов.

Процесс миелинизации начинается еще в эмбриогенезе. Миелинизация черепных нервов осуществляется в течение первых 3-4 месяцев и заканчивается к 1 году или 1 году и 3 месяцам постнатальной жизни. Миелинизация спинальных нервов завершается несколько позднее – к 2-3 годам. Полная миелинизация нервных волокон завершается в возрасте 8-9 лет. Миелинизация филогенетически более древних путей начинается раньше. Нервные проводники тех функциональных систем, которые обеспечивают выполнение жизненно важных функций миелинизируются быстрее. Созревание структур ЦНС контролируется гормонами щитовидной железы.

Нарастание массы мозга в онтогенезе

Масса головного мозга новорожденного составляет 1/8 массы тела, то есть около 400 г, причем у мальчиков она несколько больше, чем у девочек. У новорожденного хорошо выражены длинные борозды и извилины, но глубина их мала. К 9-месячному возрасту первоначальная масса мозга удваивается и к концу 1-го года жизни составляет 1/11 – 1/12 массы тела. К 3 годам масса головного мозга по сравнению с массой его при рождении утраивается, к 5 годам она составляет 1/13-1/14 массы тела. К 20 годам первоначальная масса мозга увеличивается в 4-5 раз и составляет у взрослого человека всего 1/40 массы тела.

Функциональное созревание

В спинном мозге, стволе и гипоталамусе у новорожденных обнаруживают ацетилхолин, γ-аминомасляную кислоту, серотонин, норадреналин, дофамин, однако их количество составляет лишь 10-50% от содержания у взрослых. В постсинаптических мембранах нейронов уже к моменту рождения появляются специфические для перечисленных медиаторов рецепторы. Электрофизиологические характеристики нейронов имеют ряд возрастных особенностей. Так, например, у новорожденных ниже потенциал покоя нейронов; возбуждающие постсинаптические потенциалы имеют большую длительность, чем у взрослых, более продолжительную синаптическую задержку, в итоге нейроны новорожденных и детей первых месяцев жизни менее возбудимы. Кроме этого постсинаптическое торможение нейронов новорожденных менее активно, так как мало еще тормозных синапсов на нейронах. Электрофизиологические характеристики нейронов ЦНС у детей приближаются к таковым у взрослых в возрасте 8-9 лет. Стимулирующую роль в ходе созревания и функционального становления ЦНС играют афферентные потоки импульсов, поступающие в структуры мозга при действии внешних раздражителей.



ФИЛИАЛ негосударственного образовательного учреждения профессионального образования

СЕРГИЕВО-ПОСАДСКОГО ГУМАНИТАРНОГО ИНСТИТУТА В Г. ТАЛДОМЕ

Реферат

по предмету: Физиология центральной нервной системы

тема: «Эмбриональное и постнатальное развитие ЦНС»

Выполнил

Иванов Э.В.

Проверила:

Алтунина В.С.

г. Талдом, 2010 г.


ВВЕДЕНИЕ

Физиология человека – это наука о жизнедеятельности целостного организма и его частей (клеток, тканей, органов), изучающая качественное взаимодействие организма человека с окружающей его экологической средой. Физиология является научной основой всех дисциплин о человеке.

Зародившись ещё в древности в связи с потребностями медицины. Физиология продолжает бурно развиваться и в настоящее время. Огромнейший вклад в развитие этой области знаний внесли отечественные учёные, открытия которых часто создавали новые отрасли физиологии. Это: М.В. Ломоносов, автор закона сохранения материи и энергии. И.М. Сетченов – «отец русской физиологии». Ему принадлежат ряд открытий в области физиологии крови, физиологии труда, открытие торможения в ЦНС. Труд И.М. Сетченова «Рефлексы головного мозга» считается гениальным.


Эмбриональное и постнатальное развитие ЦНС

Заметьте, что некоторые периоды значительно варьируют в различных культурах, тогда как другие в большей степени зависят от индивидуальных особенностей биологического развития человека (например, подростковый возраст определяется вступлением в пубертатный период).

Пренатальный период - от зачатия до рождения ребенка.

Младенчество - от рождения до 18-24 месяцев.

Первые два года жизни (период тоддлеров) - от 12-15 месяцев до 2-3 лет.

Раннее детство - от 2-3 лет до 5-6 лет.

Среднее детство - от 6 приблизительно до 12 лет.

Подростковый и юношеский возраст - приблизительно с 12 лет до 18-21 года.

Ранняя взрослость - от 18-21 года до 40 лет.

Средняя взрослость - от 40 до 60-65 лет.

Поздняя взрослость - от 60-65 лет до смерти.

Развитие начинается с зачатия и продолжается на протяжении всей нашей жизни, хотя связанные с ним изменения обычно являются более очевидными и более быстрыми в очень юном возрасте. Это основная причина, в силу которой «периоды» развития и соответствующие им возрастные рамки сравнительно непродолжительны в ранние годы и удлиняются по мере продолжения развития. Заметьте также, что градации жизненного пути человека, приведенные в таблице, наиболее применимы к людям индустриальных культур. Например, данные таблицы свидетельствуют, что «подростковый и юношеский возраст» является достаточно протяженным периодом, который на самом деле может продолжаться вплоть до достижения человеком 18-20 лет, и «поздняя взрослость» не начинается до возраста 60-65 лет. Однако в некоторых обществах, где нет необходимости в длительном сроке образования и очень сложное экономическое положение, подростковый период может быть более коротким, начиная с вступления в пубертат и завершаясь, возможно, всего лишь через 2-4 года. Подобным образом, в некоторых точках нашей планеты, где для обеспечения выживания необходим тяжелый физический труд, а хорошее питание и медицинская помощь не всегда легко доступны, поздняя взрослость может наступать уже в 45 лет. Таким образом, приводимые здесь периоды и возрастные границы не являются универсальными.

Цель нашей работы - рассмотреть тенденции, закономерности и процессы развития человека на протяжении всей жизни, используя для этого опыт нескольких отраслей знания. Мы намерены исследовать человеческий организм во все возрастные периоды и на всех стадиях, принимая во внимание биологические, антропологические, социологические и психологические факторы, влияющие на его развитие. Особое внимание будет уделено человеческим отношениям, так как именно они помогают понять, кто мы такие и как относимся к миру. Страстные и холодные, доброжелательные и скептичные, дружеские и формальные, отношения между людьми оказывают влияние на их развитие, и ими нельзя пренебречь. Суть нашей точки зрения заключается в том, что люди, прежде всего существа социальные.

Мы рассматриваем процессы реагирования и интерпретации людьми различных воздействий, в том числе и социальных, с той позиции, что каждый человек активно участвует в ходе своего собственного развития. Как существа, по меньшей мере, потенциально способные к сложному, абстрактному мышлению, мы являемся не просто фишками в игре; мы действующие игроки, влияющие на формирование нашей «игры». Представьте себе, как живут люди в какой-нибудь уединенной общине. Частично они являются продуктом среды, в которой выросли, и большую часть времени они проводят в гармоничном совместном труде, направленном на благо всей их общины. В то же время они являются индивидуумами со своими личными желаниями и чувствами, и каждый день они проявляют какие-то из них. Однако жизнь не всегда гармонична - практически в любой группе людей бывает время разногласий и споров, причиной которых становятся личные чувства и желания.

Онтогенез, или индивидуальное развитие организма, делится на два периода: пренатальный (внутриутробный) и постнатальный (после рождения). Первый продолжается от момента зачатия и формирования зиготы до рождения; второй - от момента рождения и до смерти.

Пренатальный период в свою очередь подразделяется на три периода: начальный, зародышевый и плодный. Начальный (предимплантационный) период у человека охватывает первую неделю развития (с момента оплодотворения до имплантации в слизистую оболочку матки). Зародышевый (предплодный, эмбриональный) период - от начала второй недели до конца восьмой недели (с момента имплантации до завершения закладки органов). Плодный (фетальный) период начинается с девятой недели и длится до рождения. В это время происходит усиленный рост организма.

Постнатальный период онтогенеза подразделяют на одиннадцать периодов: 1-й - 10-й день - новорожденные; 10-й день - 1 год - грудной возраст; 1-3 года - раннее детство; 4-7 лет - первое детство; 8-12 лет - второе детство; 13-16 лет - подростковый период; 17-21 год - юношеский возраст; 22-35 лет - первый зрелый возраст; 36-60 лет - второй зрелый возраст; 61-74 года - пожилой возраст; с 75 лет - старческий возраст, после 90 лет - долгожители. Завершается онтогенез естественной смертью.

Пренатальный период онтогенеза начинается с момента слияния мужских и женских половых клеток и образования зиготы. Зигота последовательно делится, образуя шаровидную бластулу. На стадии бластулы идет дальнейшее дробление и образование первичной полости - бластоцеля.

Затем начинается процесс гаструляции, в результате которого происходит перемещение клеток различными способами в бластоцель, с образованием двухслойного зародыша.

Наружный слой клеток называется эктодерма, внутренний - энтодерма. Внутри образуется полость первичной кишки - гастроцель. Это стадия гаструлы. На стадии нейрулы образуются нервная трубка, хорда, сомиты и другие эмбриональные зачатки. Зачаток нервной системы начинает развиваться еще в конце стадии гаструлы. Клеточный материал эктодермы, расположенный на дорсальной поверхности зародыша, утолщается, образуя медуллярную пластинку. Эта пластинка ограничивается с боков медуллярными валиками. Дробление клеток медуллярной пластинки (медуллобластов) и медуллярных валиков приводит к изгибанию пластинки в желоб, а затем к смыканию краев желоба и образованию медуллярной трубки. При соединении медуллярных валиков образуется ганглиозная пластина, которая затем делится на ганглиозные валики.

Одновременно происходит погружение нервной трубки внутрь зародыша.

Однородные первичные клетки стенки медуллярной трубки - медуллобласты - дифференцируются на первичные нервные клетки (нейробласты) и исходные клетки нейроглии (спонгиобласты). Клетки внутреннего, прилежащего к полости трубки, слоя медуллобластов превращаются в эпендимные, которые выстилают просвет полостей мозга. Все первичные клетки активно делятся, увеличивая толщину стенки мозговой трубки и уменьшая просвет нервного канала. Нейробласты дифференцируются на нейроны, спонгиобласты - на астроциты и олигодендроциты, эпендимные - на эпендимоциты (на этом этапе онтогенеза клетки эпендимы могут образовывать нейробласты и спонгиобласты). При дифференцировке нейробластов отростки удлиняются и превращаются в дендриты и аксон, которые на данном этапе лишены миелиновых оболочек. Миелинизация начинается с пятого месяца пренатального развития и полностью завершается лишь в возрасте 5-7 лет. На пятом же месяце появляются синапсы. Миелиновая оболочка формируется в пределах ЦНС олигодендроцитами, а в периферической нервной системе - Шванновскими клетками.

В процессе эмбрионального развития формируются отростки и у клеток макроглии (астроцитов и олигодендроцитов). Клетки микроглии образуются из мезенхимы и появляются в ЦНС вместе с прорастанием в нее кровеносных сосудов.

Клетки ганглиозных валиков дифференцируются сначала в биполярные, а затем в псевдоуниполярные чувствительные нервные клетки, центральный отросток которых уходит в ЦНС, а периферический - к рецепторам других тканей и органов, образуя афферентную часть периферической соматической нервной системы. Эфферентная часть нервной системы состоит из аксонов мотонейронов вентральных отделов нервной трубки.

В первые месяцы постнатального онтогенеза продолжается интенсивный рост аксонов и дендритов и резко возрастает количество синапсов в связи с развитием нейронных сетей.

Эмбриогенез головного мозга начинается с развития в передней (ростральной) части мозговой трубки двух первичных мозговых пузырей, возникающих в результате неравномерного роста стенок нервной трубки (архэнцефалон и дейтерэнцефалон). Дейтерэнцефалон, как и задняя часть мозговой трубки (впоследствии спинной мозг), располагается над хордой. Архэнцефалон закладывается впереди нее. Затем в начале четвертой недели у зародыша дейтерэнцефалон делится на средний (mesencephalon) и ромбовидный (rhombencephalon) пузыри. А архэнцефалон превращается на этой (трехпузырной) стадии в передний мозговой пузырь (prosencephalon). В нижней части переднего мозга выпячиваются обонятельные лопасти (из них развиваются обонятельный эпителий носовой полости, обонятельные луковицы и тракты). Из дорсолатеральных стенок переднего мозгового пузыря выступают два глазных пузыря. В дальнейшем из них развиваются сетчатка глаз, зрительные нервы и тракты.

Нервная система имеет эктодермальное происхождение, т. е. развивается из внешнего зачаточного листка толщиной в одно­клеточный слой вследствие образования и деления медуллярной трубки. В эволюции нервной системы схематично можно выде­лить такие этапы.

1. Сетевидная, диффузная, или асинаптическая, нервная система. Возникает она у пресноводной гидры, имеет форму сетки, которая образуется соединением отростчатых клеток и равномерно распределяется по всему телу, сгущаясь вокруг ро­товых придатков. Клетки, которые входят в состав этой сетки, существенно отличаются от нервных клеток высших животных: они маленькие по размеру, не имеют характерного для нервной клетки ядра и хроматофильной субстанции. Эта нервная систе­ма проводит возбуждения диффузно, по всем направлениям, обеспечивая глобальные рефлекторные реакции. На дальней­ших этапах развития многоклеточных животных она теряет зна­чение единой формы нервной системы, но в организме человека сохраняется в виде мейснеровского и ауэрбаховского сплетений пищеварительного тракта.

2. Ганглиозная нервная система (в червеобразных) синаптическая, проводит возбуждение в одном направлении и обе­спечивает дифференцированные приспособительные реакции. Этому отвечает высшая степень эволюции нервной системы: развиваются специальные органы движения и рецепторные ор­ганы, в сетке возникают группы нервных клеток, в телах которых содержится хроматофильная субстанция. Она имеет свойство распадаться во время возбуждения клеток и восстанавливаться в состоянии покоя. Клетки с хроматофильной субстанцией распо­лагаются группами или узлами ганглиями, поэтому получили название ганглиозных. Итак, на втором этапе развития нервная система из сетевидной превратилась в ганглиозно-сетевидную. У человека этот тип строения нервной системы сохранился в виде паравертебральных стволов и периферических узлов (ганглиев), которые имеют вегетативные функции.

3. Трубчатая нервная система (в позвоночных) отличается от нервной си­стемы червеобразных тем, что в позвоночных возникли скелетные моторные аппараты с поперечно-полосатыми мышцами. Это обусловило развитие цен­тральной нервной системы, отдельные части и структуры которой формиру­ются в процессе эволюции постепенно и в определенной последовательности. Сначала из каудальной, недифференцированной части медуллярной трубки образуется сегментарный аппарат спинного мозга, а из передней части мозго­вой трубки вследствие кефализации (от греч. kephale - голова) формируются основные отделы головного мозга. В онтогенезе человека они последователь­но развиваются по известной схеме: сначала формируются три первичных мозговых пузыря: передний (prosencephalon), средний (mesencephalon) и ромбовидный, или задний (rhombencephalon). В дальнейшем из переднего мозгового пузыря образуются конечный (telencephalon) и промежуточный (diencephalon) пузыри. Ромбовидный мозговой пузырь также фрагментируется на два: задний (metencephalon) и продолговатый (myelencephalon). Таким образом, стадия трех пузырей сменяется стадией образования пяти пузырей, из которых формируются разные отделы центральной нервной системы: из telencephalon большие полушария мозга, diencephalon промежуточный мозг, mesencephalon - средний мозг, metencephalon - мост мозга и мозжечок, myelencephalon - продолговатый мозг.

Эволюция нервной системы позвоночных обусловила развитие новой системы, способной образовывать временные соединения функционирую­щих элементов, которые обеспечиваются расчленением центральных нерв­ных аппаратов на отдельные функциональные единицы нейроны. Следо­вательно, с возникновением скелетной моторики в позвоночных развилась нейронная цереброспинальная нервная система, которой подчинены более древние образования, что сохранились. Дальнейшее развитие централь­ной нервной системы обусловило возникновение особых функциональных взаимосвязей между головным и спинным мозгом, которые построены по принципу субординации, или соподчинения. Суть принципа субординации состоит в том, что эволюционно новые нервные образования не только ре­гулируют функции более древних, низших нервных структур, а и соподчи­няют их себе путем торможения или возбуждения. Причем субординация существует не только между новыми и древними функциями, между голов­ным и спинным мозгом, но и наблюдается между корой и подкоркой, между подкоркой и стволовой частью мозга и в определенной степени даже между шейным и поясничным утолщениями спинного мозга. С появлением новых функций нервной системы древние не исчезают. При выпадении новых функций появляются древние формы реакции, обусловленные функцио­нированием более древних структур. Примером может служить появление субкортикальных или стопных патологических рефлексов при поражении коры большого мозга.

Таким образом, в процессе эволюции нервной системы можно выделить несколько основных этапов, которые являются основными в ее морфологи­ческом и функциональном развитии. Из морфологических этапов следует назвать централизацию нервной системы, кефализацию, кортикализацию в хордовых, появление симметричных полушарий - у высших позвоночных. В функциональном отношении эти процессы связаны с принципом субор­динации и возрастающей специализацией центров и корковых структур. Функциональной эволюции соответствует эволюция морфологическая. При этом филогенетически более молодые структуры мозга являются более ранимыми и в меньшей степени обладают способностью к восстановлению.

Нервная система имеет нейронный тип строения, т. е. состоит из нерв­ных клеток - нейронов, которые развиваются из нейробластов.

Нейрон является основной морфологической, генетической и функцио­нальной единицей нервной системы. Он имеет тело (перикарион) и большое количество отростков, среди которых различают аксон и дендриты. Аксон, или нейрит, - это длинный отросток, который проводит нервный импульс в направлении от тела клетки и заканчивается терминальным разветвлением. Он всегда в клетке лишь один. Дендриты - это большое количество коротких древообразных разветвленных отростков. Они передают нервные импульсы по направлению к телу клетки. Тело нейрона состоит из цитоплазмы и ядра с одним или несколькими ядрышками. Специальными компонентами нерв­ных клеток являются хроматофильная субстанция и нейрофибриллы. Хроматофильная субстанция имеет вид разных по размерам комочков и зерен, содержится в теле и дендритах нейронов и никогда не выявляется в аксонах и начальных сегментах последних. Она является показателем функциональ­ного состояния нейрона: исчезает в случае истощения нервной клетки и вос­станавливается в период покоя. Нейрофибриллы имеют вид тонких нитей, которые размещаются в теле клетки и ее отростках. Цитоплазма нервной клетки содержит также пластинчатый комплекс (сетчатый аппарат Гольджи), митохондрии и другие органоиды. Сосредоточение тел нервных кле­ток формируют нервные центры, или так называемое серое вещество.

Нервные волокна - это отростки нейронов. В границах центральной нерв­ной системы они образуют проводящие пути - белое вещество мозга. Нервные волокна состоят из осевого цилиндра, который является отростком нейрона, и оболочки, образованной клетками олигодендроглии (нейролемоцитами, шванновскими клетками). В зависимости от строения оболочки, нервные во­локна делятся на миелиновые и безмиелиновые. Миелиновые нервные волокна входят в состав головного и спинного мозга, а также периферических нервов. Они состоят из осевого цилиндра, миелиновой оболочки, нейролемы (шванновской оболочки) и базальной мембраны. Мембрана аксона служит для про­ведения электрического импульса и в участке аксональных окончании выде­ляет медиатор, а мембрана дендритов - реагирует на медиатор. Кроме того, она обеспечивает распознавание других клеток в процессе эмбрионального развития. Поэтому каждая клетка отыскивает определенное ей место в сети нейронов. Миелиновые оболочки нервных волокон не сплошные, а прерыва­ются промежутками сужений - узлами (узловые перехваты Ранвье). Ионы могут проникать в аксон только в области перехватов Ранвье и в участке на­чального сегмента. Безмиелиновые нервные волокна типичны для автономной (вегетативной) нервной системы. Они имеют простое строение: состоят из осевого цилиндра, нейролеммы и базальной мембраны. Скорость передачи нервного импульса миелиновыми нервными волокнами значительно выше (до 40-60 м/с), чем немиелиновыми (1-2 м/с).

Основными функциями нейрона являются восприятие и переработка ин­формации, проведение ее к другим клеткам. Нейроны выполняют также тро­фическую функцию, влияя на обмен веществ в аксонах и дендритах. Различа­ют следующие виды нейронов: афферентные, или чувствительные, которые воспринимают раздражение и трансформируют его в нервный импульс; ассо­циативные, промежуточные, или интернейроны, которые передают нервный импульс между нейронами; эфферентные, или моторные, которые обеспечи­вают передачу нервного импульса на рабочую структуру. Эта классификация нейронов основывается на положении нервной клетки в составе рефлектор­ной дуги. Нервное возбуждение по ней передается лишь в одном направле­нии. Это правило получило название физиологической, или динамической, поляризации нейронов. Что касается изолированного нейрона, то он способен проводить импульс в любом направлении. Нейроны коры большого мозга по морфологическим признакам делятся на пирамидные и непирамидные.

Нервные клетки контактируют между собой через синапсы специали­зированные структуры, где нервный импульс переходит из нейрона на ней­рон. Большей частью синапсы образуются между аксонами одной клетки и дендритами другой. Различают также другие типы синаптических контактов: аксосоматические, аксоаксональные, дендродентритные. Итак, любая часть нейрона может образовывать синапс с разными частями другого нейрона. Типичный нейрон может иметь от 1000 до 10 000 синапсов и получать ин­формацию от 1000 других нейронов. В составе синапса различают две части -пресинаптическую и постсинаптическую, между которыми находится синаптическая щель. Пресинаптическая часть образована терминальной веточкой аксона той нервной клетки, которая передает импульс. Большей частью она имеет вид небольшой пуговицы и покрыта пресинаптической мембраной. В пресинаптических окончаниях находятся везикулы, или пузырьки, которые содержат так называемые медиаторы. Медиаторами, или нейротрансмит-терами, являются разные биологически активные вещества. В частности, медиатором холинергических синапсов является ацетилхолин, адренергических - норадреналин и адреналин. Постсинаптическая мембрана содержит особый белок рецептор медиатора. На высвобождение нейромедиатора влияют механизмы нейромодуляции. Эту функцию выполняют нейропептиды и нейрогормоны. Синапс обеспечивает односторонность проведения нервного импульса. По функциональным особенностям различают два вида синапсов - возбуждающие, которые способствуют генерации импульсов (де­поляризация), и тормозные, которые могут тормозить действие сигналов (ги­перполяризация). Нервным клеткам присущ низкий уровень возбуждения.

Испанский нейрогистолог Рамон-и-Кахаль (1852-1934) и итальянский гистолог Камилло Гольджи (1844-1926) за разработку учения о нейроне как о морфологической единице нервной системы были удостоены Нобелевской премии в области медицины и физиологии (1906 г.). Суть разработанной ими нейронной доктрины заключается в следующем.

1. Нейрон является анатомической единицей нервной системы; он состо­ит из тела нервной клетки (перикарион), ядра нейрона и аксона / дендритов. Тело нейрона и его отростки покрыты цитоплазматической частично про­ницаемой мембраной, которая выполняет барьерную функцию.

2. Каждый нейрон является генетической единицей, развивается из не­зависимой эмбриональной клетки-нейробласта; генетический код нейрона точно определяет его структуру, метаболизм, связи, которые генетически запрограммированы.

3. Нейрон является функциональной единицей, способной воспринимать стимул, генерировать его и передавать нервный импульс. Нейрон функцио­нирует как единица лишь в коммуникационном звене; в изолированном со­стоянии нейрон не функционирует. Нервный импульс передается на другую клетку через терминальную структуру - синапс, с помощью нейротранс-миттера, который может тормозить (гиперполяризация) или возбуждать (деполяризация) последующие нейроны на линии. Нейрон генерирует или не генерирует нервный импульс в соответствии с законом «все или ничего».

4. Каждый нейрон проводит нервный импульс лишь в одном направле­нии: от дендрита к телу нейрона, аксону, синаптическому соединению (ди­намическая поляризация нейронов).

5. Нейрон является патологической единицей, т. е. реагирует на повреж­дение как единица; при сильных повреждениях нейрон гибнет как клеточная единица. Процесс дегенерации аксона или миелиновой оболочки дистальнее места повреждения называется валлеровской дегенерацией (перерождением).

6. Каждый нейрон является регенеративной единицей: у человека реге­нерируют нейроны периферической нервной системы; проводящие пути в пределах центральной нервной системы эффективно не регенерируют.

Таким образом, в соответствии с нейронной доктриной нейрон является анатомической, генетической, функциональной, поляризованной, патологи­ческой и регенеративной единицей нервной системы.

Кроме нейронов, которые образовывают паренхиму нервной ткани, важ­ным классом клеток центральной нервной системы являются глиальные клетки (астроциты, олигодендроциты и микроглиоциты), количество ко­торых в 10-15 раз превышает количество нейронов и которые формируют нейроглию. Ее функции: опорная, разграничительная, трофическая, секре­торная, защитная. Глиальные клетки принимают участие в высшей нервной (психической) деятельности. При их участии осуществляется синтез медиа­торов центральной нервной системы. Нейроглия играет важную роль так­же в синаптической передаче. Она обеспечивает структурную и метаболи­ческую защиту для сетки нейронов. Итак, между нейронами и глиальными клетками существуют разнообразные морфофункциональные связи.

из клеток эктодермалыюго зародышевого листка образуется мозговая, или медуллярная, пластинка. Ее края в результате неравномерного размножения ее клеток сближаются, а центральная часть, наоборот, погружается в тело зародыша. Затем края пластинки смыкаются - образуется медуллярная трубка Образование нервной трубки из эктодермы

Головной мозг эмбриона. Стадия трех мозговых пузырей из клеток, входящих в состав нервных валиков, образуются узловые (ганглиозные) пластинки. В дальнейшем они расщепляются: часть их, располагаясь в виде валиков по бокам нервной трубки, ближе к ее дорсальной поверхности, образует спинномозговые узлы; другая часть нервных клеток мигрирует на периферию, образуя узлы вегетативной нервной системы.

Нейроны развиваются как высокоспециализированные клетки. Посредством своих отростков одни нейроны устанавливают связи между различными отделами мозга – это вставочные (ассоциативные) нейроны, другие осуществляют связь нервной системы с другими органами – это афферентные (рецепторные) и эфферентные (эффекторные) нейроны. Аксоны афферентных и эфферентных нейронов входят в состав нервов, отходящих от головного и спинного мозга. Головной мозг эмбриона. Стадия пяти мозговых пузырей

Эмбрион длиной 13, 6 мм Эмбрион длиной 10, 2 мм Эмбрион длиной 50 мм Эмбрион длиной 13 см

Одной из важных нейрогистологических характеристик развития нервной системы высших позвоночных является асинхронность дифференцировки ее отделов. Нейроны различных отделов нервной системы и даже нейроны в пределах одного центра дифференцируются асинхронно: а) дифференцировка нейронов вегетативной нервной системы значительно отстает от таковой в основных отделах соматической системы; б) дифференцировка симпатических нейронов несколько отстает от развития парасимпатических.

Раньше всего происходит созревание продолговатого и спинного мозга, позже морфологически и функционально развиваются ганглии ствола головного мозга, подкорковые узлы, мозжечок и кора больших полушарий. Каждое из этих образований проходит определенные этапы функционального и структурного развития. Так, в спинном мозге раньше созревают элементы в области шейного утолщения, а затем идет постепенное развитие клеточных структур в каудальном направлении; первыми дифференцируются спинальные мотонейроны, позже чувствительные нейроны и в последнюю очередь - вставочные нейроны и проводящие межсегментные пути.

Ядра стволовой части головного мозга, промежуточный мозг, подкорковые ганглии, мозжечок и отдельные слои коры большого мозга структурно развиваются также в определенной последовательнос ти и в тесной связи друг с другом. Сагиттальный разрез головного мозга: 1 - лобная доля; 2 - поясная извилина; 3 - мозолистое тело; 4 - прозрачная перегородка; 5 - свод; 6 - передняя спайка; 7 - зрительный перекрест; 8 - подталамическая область; 9 - гипофиз; 10 - височная доля; 11 - мост; 12 - продолговатый мозг; 13 - четвертый желудочек; 14 - мозжечок; 15 - водопровод мозга; 16 - затылочная доля; 17 - пластинка крыши; 18 - шишковидное тело; 19 - теменная доля; 20 - таламус.

Развитие спинного мозга и спинномозговых ганглиев После разделения нервной трубки на три слоя в той ее части, которая образует в дальнейшем спинной, продолговатый, задний и средний мозг, в мантийном слое по всему длиннику названных отделов определяются четыре параллельные колонки нейробластов: две расположенные дорсолатерально и две вентролатерально. Они являются закладками будущих рогов серого вещества спинного мозга и их аналогов в вышележащих отделах ствола. Из вентролатеральных колонок образуются передние рога, из дорсолатеральных - задние.

Одним из наиболее выраженных даже на макроскопическом уровне изменений является формирование шейных и поясничных утолщений спинного мозга, связанных с ростом зачатков верхних и нижних конечностей. Спинной мозг новорожденного представляет собой анатомически и гистологически вполне дифференцированную структуру, обеспечивающую на необходимом уровне рефлекторную деятельность ребенка этого этапа развития. Его масса составляет 3 -4 г; масса спинного мозга взрослого человека равна приблизительно 30 г. Схематическое изображение соотношений сегментов спинного мозга и позвонков на сагиттальном разрезе позвоночника. Оранжевым и желтым цветом обозначены шейные сегменты и шейные позвонки, фиолетовым и сиреневым - грудные, голубым - поясничные и копчиковые, розовым - крестцовые. Римскими цифрами обозначены позвонки, арабскими - корешки спинномозговых нервов соответствующих сегментов.

Схематическое изображение поперечного разреза спинного мозга. Слева обозначены проводящие пути, справа - участки серого вещества; одинаковыми цветами обозначены группы проводящих путей и соответствующие им участки серого вещества; синим цветом - чувствительные пути и задний рог, красным - пирамидные пути и передний рог, серым - собственные пучки спинного мозга и промежуточное вещество, зеленым - восходящие пути экстрапирамидной системы, желтым - боковой рог: 1 - покрышечно-спинномозговой путь; 2 - передний корково-спинномозговой путь; 3 - передний спиноталамический путь; 4 - преддверно-спинномозговой путь; 5 - оливоспинномозговой путь; 6 - ретикул-спинномозговой путь: 7 - передний спиномозжечковый путь; 8 - латеральный спиноталамический путь; 9 - красноядерно-спинномозговой путь; 10 - задний спиномозжечковый путь; 11 - латеральный корково-спинномозговой путь; 12 - собственные пучки спинного мозга; 13 - клиновидный пучок; 14 - тонкий пучок; 15 - овальный пучок; 16 - задний канатик; 17 - боковой канатик; 18 - передний канатик: 19 - промежуточное вещество; 20 - задний рог; 21 - боковой рог; 22 - передний рог; 23 - задний корешок; 24 - передний корешок.

Развитие продолговатого, заднего, среднего и промежуточного мозга Уровни срезов ствола мозга. I - срез продолговатого мозга на его границе со спинным мозгом; II - срез продолговатого мозга на уровне его средней части; III - срез продолговатого мозга на уровне верхней части; IV - срез на границе продолговатого мозга и моста; V - срез на уровне средней трети моста; VII - срез на уровне передних бугров четверохолмия.

На начальных этапах формирования продолговатый мозг имеет сходство со спинным мозгом. В нем также в середине 2 -го месяца внутриутробного развития образуются вентролатеральные и дорсолатеральные колонки клеток. При дальнейшем морфогенезе крыловидная и базальная пластинки как бы расходятся в латеральном направлении, раскрываясь наподобие книжки. Это происходит в период образования мозгового изгиба. Клетки мезенхимы, прилежащие к верхним отделам развивающегося продолговатого мозга, дают начало большому числу ангиобластов, образующих сосудистые сплетения, из которого формируется сосудистое сплетение четвертого (IV) желудочка. Этот процесс начинается на 6 -й неделе внутриутробного развития. На 3 -м месяце внутриутробного развития крыловидная и базальная пластинки расщепляются в продольном направлении, из крыловидной пластинки образуются 4 клеточные колонки, а из базальной - 3. Некоторые черепные нервы берут начало из этих колонок или заканчиваются в них. В этих колонках локализуются ядра языкоглоточного нерва, ядро одиночного пути, одно из ядер тройничного нерва, ядро вестибуло-кохлеарного нерва. Два ядра тройничного нерва закладываются изначально в продолговатом мозге, затем, вторично, перемещаются в задний мозг. Впродолговатом мозге закладывается большая часть ядер черепных нервов, которые затем мигрируют в другие отделы нервной системы, в частности в задний мозг. У новорожденного в продолговатом мозге продолжается процесс уменьшения клеточных масс. У полуторагодовалого ребенка клетки продолговатого мозга организованы в четко определяемые ядра и имеют почти все признаки дифференцировки. У ребенка 7 лет нейроны продолговатого мозга неотличимы от нейронов взрослого даже по тонким морфологическим признакам.

Задний мозг. Анатомически задний мозг делится на три части: 1) центрально расположенную ядросодержащую часть, которая служит прямым продолжением продолговатого мозга; 2) мозжечок и 3) мост. Мозжечок В конце 2 -го месяца развития в центральной части крыловидной пластинки образуются нижние ножки мозжечка (веревчатые тела). У новорожденного мозжечок, будучи заметно вытянут в длину, лежит в черепной коробке выше, чем у взрослого. Борозды относительно неглубокие, слабо обрисовано древо жизни. С ростом ребенка борозды становятся глубже. До 3 месячного возраста в коре мозжечка сохраняется зародышевый слой. У ребенка сразу после рождения можно видеть наружный зернистый слой и процессы миграции клеток-зерен. Есть наблюдения, что некоторые клетки Пуркинье у человека возникают в результате деления клеток наружного зернистого слоя. К концу 3 -го месяца внутриутробного развития эти клетки мигрируют в направлении внутреннего зернистого слоя и занимают промежуточное положение. Именно они в дальнейшем становятся грушевидными клетками коры мозжечка. Первые клетки Пуркинье появляются в черве мозжечка человека уже на 4 -м месяце внутриутробного развития. Следует подчеркнуть, что формирование борозд в развивающемся мозжечке человека идет параллельно или вслед за дифференцировкой клеток Пуркинье. В возрасте от 3 мес до 1 года происходит активная дифференцировка мозжечка: нарастает объем и масса перикарионов грушевидных клеток, увеличивается количество синапсов на них, увеличивается диаметр волокон в белом веществе мозжечка, интенсивно растет молекулярный слой коры. Дифференцировка мозжечка происходит и в более поздние сроки. Это связано с дальнейшим совершенствованием движений ребенка.

Схематическое изображение мозжечка (вид спереди): 1 - центральная долька; 2 - четырехугольная долька; 3 - узелок; 4 - миндалина; 5 - язычок червя; 6 - пирамида червя; 7 - горизонтальная щель; 8 - бугор червя; 9 - нижняя полулунная долька; 10 - верхняя полулунная долька; 11 - двубрюшная долька.

Средний мозг. Так же как и спинной, средний мозг имеет крыловидную и базальную пластинки. Из базальной пластинки развивается одно ядро глазодвигательного нерва, которое хорошо выражено уже к концу 3 -го месяца внутриутробного периода. Крыловидная пластинка дает начало ядрам нижних и верхних бугорков четверохолмия, а также, возможно, части клеток красных ядер. Во второй половине внутриутробного развития на вентральной поверхности среднего мозга появляются два крупных скопления волокон - основания ножек мозга. Рост крыловидной и базальной пластинок среднего мозга кнаружи, особенно интенсивный во второй половине внутриутробного периода, сдавливает полость IV желудочка, сужая его до небольшого канала, именуемого водопроводом мозга.

Разрез промежуточного мозга. Строение гипоталамуса. Промежуточный мозг. Образуется промежуточный мозг из переднего мозгового пузыря, гистологически представляя собой массивное утолщение мантийного слоя, разросшегося до такой степени, что почти не остается краевой вуали. В результате неравномерной пролиферации клеточного материала промежуточного мозга в нем образуются закладки: таламуса дорсально расположенная и гипоталамуса - вентрально расположенная. В передненижнем отделе промежуточного мозга формируются глазные бокалы.

Развитие конечного мозга Конечный мозг также развивается из переднего мозгового пузыря. Его стенка, соответствующая конечному мозгу, выпячивается в дорсолатеральном направлении и образует два мозговых пузыря, которые с течением времени преобразуются в полушария мозга. Полости этих пузырей образуют боковые желудочки полушарий. Головной мозг (вид сверху): 1 - лобные доли; 2 - теменные доли; 3 - затылочные доли; 4 - продольная щель большого мозга

Конечный мозг В начале 2 -го месяца развития стенка мозговых пузырей содержит большое количество мелких короткоотростчатых нейробластов - так называемый материнский слой коры. Среди этих клеточных элементов встречаются спонгиобласты, имеющие длинные тонкие отростки, направляющиеся к наружной поверхности мозгового пузыря. Начиная с 3 -го месяца внутриутробного развития гистологически становится отчетливой закладка коры: она представляет собой узкую ленту, состоящую из густо расположенных клеток. Дальнейшая дифференцировка идет двумя параллельными путями: путем образования слоев и путем дифференцировки клеточных элементов, которая заканчивается лишь в постнатальном периоде. К 3 -му месяцу развития между пузырями образуется мозолистое тело. На 11 -12 -й неделе внутриутробного периода полушария мозга можно узнать по их форме. С 5 -го месяца в коре больших полушарий уже заметна цитоар-хитектоника. К середине 6 -го месяца внутриутробного развития в тех участках коры, которые образуют филогенетически молодую кору (neocortex), видно более или менее четкое разделение на шесть слоев, обнаруживаются отличия в строении отдельных полей. Существуют выраженные отличия в скорости дифференцировки каждого из слоев коры. Так, II и III слои коры становятся четко различимыми только после рождения. Морфологически раньше других дифференцируются гигантские пирамиды V слоя передней центральной извилины.

К моменту рождения большинство нейронов глубоких слоев коры достигают уже значительной степени зрелости, по форме тела и развитию отростков приближаясь к структуре этих слоев у взрослого. Значительная часть нейронов поверхностных слоев коры находится на более ранних этапах формирования. К концу периода внутриутробного развития отчетливо выражена миелинизация волокон, особенно в более простых (филогенетически старых) системах мозга. В это время происходят важные биохимические сдвиги в нервной ткани. Наиболее существенными из них являются изменения ряда ферментных систем, в результате которых осуществляется переход метаболизма мозга от анаэробного к аэробному. Следует отметить, что новорожденный ребенок, так же как и детеныши других млекопитающих, легче переживает относительно длительную гипоксию, чем взрослый. У плодов и новорожденных нервные клетки в коре лежат сравнительно близко друг от друга, причем часть из них располагается и в белом веществе. По мере роста ребенка концентрация клеток в единице площади снижается, несмотря на то что в серое вещество мигрируют клетки из белого вещества. Мозг новорожденного очень велик - более 10% от общей массы тела. К периоду полового созревания масса его составляет всего около 2% от массы тела, хотя, естественно, абсолютная масса мозга увеличивается с ростом ребенка.

«Новорожденный от рождения не способен ни к чему, кроме способности всему научиться» (Л. О. Бадалян). Мозг новорожденного незрелый, причем кора полушарий; большого мозга является наименее зрелым отделом всей нервной системы. Основные функции регулирования различных физиологических процессов выполняют промежуточный и средний мозг. В глубокой неприспособленности ЦНС новорожденного заложены основы гибкой, дифференцированной адаптации к условиям среды, обучения. Повидимому, это прямо связано с самым большим по продолжительности в животном мире периодом детства у человека. Даже у высших обезьян детеныш 1, 5 -2 лет уже вполне способен к самостоятельному существованию и не нуждается в родительском уходе. После рождения масса мозга увеличивается в основном за счет роста тел нейронов, происходит дальнейшее формирование ядер головного мозга. Их форма меняется мало, однако размеры и состав их, а также топография относительно друга претерпевают достаточно демонстративные изменения. Процессы развития коры заключаются, с одной стороны, в образовании ее шести слоев, а с другой - в дифференциации нервных клеток, характерных для каждого коркового слоя. К моменту рождения у ребенка уже заканчивается образование шестислойной коры. В то же время дифференцировка нервных клеток отдельных слоев к этому времени еще далеко не завершается. Наиболее интенсивно дифференциация клеточных элементов, а также миелинизация аксонов нервных клеток коры идет в постнатальном периоде - в течение 1 -го и 2 го годов жизни ребенка. В этот период резко увеличиваются масса и поверхность коры полушарий большого мозга.

К 2 -летнему возрасту заканчивают свое формирование пирамидные клетки коры. Первые 2 -3 года жизни являются наиболее ответственными этапами морфологического и функционального становления мозга ребенка. На 1 -м году жизни закладываются основы психической деятельности, идет подготовка к самостоятельному хождению, речевой деятельности. Существует мнение, что в этот период происходит «первичное обучение» , т. е. формирование нейронных ансамблей, которые в дальнейшем служат фундаментом для более сложных форм обучения. В последующие годы темп развития корковых структур хотя и замедляется, но к 4 -7 годам клетки большинства областей коры становятся близкими по строению клеткам коры взрослого человека. Полностью развитие клеточных структур коры полушарий большого мозга заканчивается только к 10 -12 годам.

Морфологическое созревание отдельных областей коры, связанных с деятельностью различных анализаторов, идет неодновременно. Раньше других приближаются к строению мозга взрослого человека корковые концы обонятельного анализатора, представленного в древней, старой и межуточной коре. В новой коре прежде всего развиваются корковые концы двигательного и кожного анализаторов, а также лимбическая область, связанная с интерорецепторами, и инсулярная область, имеющая отношение к обонятельной и речедвигательной функциям. Затем дифференцируются корковые концы слухового и зрительного анализаторов и верхняя теменная область, связанная с кожным анализатором. В последнюю очередь достигают полной зрелости структуры лобной и нижней теменной областей и височно-теменно-затылочной подобласти. Особенности структурного развития отдельных корковых отделов анализаторов определяют до некоторой степени последовательность появления условнорефлекторных реакций ребенка.

В этой связи следует помнить, что миелинизация черепных нервов осуществляется в течение первых 3 -4 мес и заканчивается к 1 году - 1 г 3 мес постнатальной жизни. Миелинизация спинальных нервов завершается несколько позднее - к 2 -3 годам. Процесс миелинизации нервных проводников начинается еще в эмбриогенезе. Однако темп образования миелиновых оболочек у разных нервных стволов различен, в результате чего к моменту рождения часть нервных проводников как центральной, так и периферической нервной системы не заканчивает миелинизацию.

Масса головного мозга новорожденного имеет относительно большую величину и в среднем составляет 1/8 массы тела, т. е. около 400 г, причем у мальчиков она несколько больше, чем у девочек. У новорожденного хорошо выражены длинные борозды, крупные извилины, но глубина и высота их невелики. Мелких борозд и извилин относительно мало; они появляются постепенно в течение первых лет жизни. К 9 -месячному возрасту первоначальная масса мозга удваивается и к концу 1 -го года жизни составляет 1/11 -1/12 массы тела. К 3 годам масса головного мозга по сравнению с массой его при рождении утраивается, к 5 годам составляет 1/13 -1/14 массы тела, к 20 годам первоначальная масса мозга увеличивается в 4 -5 раз и составляет у взрослого человека всего 1/40 массы тела. Наряду с ростом головного мозга меняются и пропорции черепа. Боковые желудочки сравнительно широкие. Мозолистое тело тонкое и короткое, в течение первых 5 лет оно становится толще и длиннее, достигая к 20 годам окончательных размеров.

Онтогенез (оntogenesis; греч. оп, ontos - сущее + genesis - зарождение, происхождение) - процесс индивидуального развития организма от момента его зарождения (зачатия) до смерти. В основе онтогенеза лежит цепь строго определенных последовательных биохимических, физиологических и морфологических изменений, специфичных для каждого из периодов индивидуального развития организма конкретного вида. В соответствии с этими изменениями выделяют:
эмбриональный (зародышевый, или пренатальный) - время от оплодотворения до рождения
постэмбриональный (послезародышевый, или постнатальный) периоды - от рождения до смерти:

Развитие ЦНС человека (по Ф.Булум А. Луйзерсонин и Л. Хофстендер, 1988):

Согласно биогенетическому закону, в онтогенезе нервная система повторяет этапы филогенеза. Вначале происходит диффереицировка зародышевых листков, затем из клеток эктодермалыюго зародышевого листка образуется мозговая, или медуллярная, пластинка. Ее края в результате неравномерного размножения ее клеток сближаются, а центральная часть, наоборот, погружается в тело зародыша. Затем края пластинки смыкаются - образуется медуллярная трубка:

Образование нервной трубки из эктодермы:

В дальнейшем из задней ее части, отстающей в росте, образуется спинной мозг, из передней, развивающейся более интенсивно, - головной мозг. Канал медуллярной трубки превращается в центральный канал спинного мозга и желудочки головного мозга.

Нервная трубка представляет собой эмбриональный зачаток всей нервной системы человека. Из нее в дальнейшем формируется головной и спинной мозг, а также периферические отделы нервной системы. При смыкании нервного желобка по бокам в области его приподнятых краев (нервных валиков) с каждой стороны выделяется группа клеток, которая по мере обособления нервной трубки от кожной эктодермы образует между нервными валиками и эктодермой сплошной слой - ганглиозную пластинку. Последняя служит исходным материалом для клеток чувствительных нервных узлов (сигнальных и краниальных) и узлов вегетативной нервной системы, иннервирующей внутренние органы.

Нервная трубка на ранней стадии своего развития состоит из одного слоя клеток цилиндрической формы, которые в дальнейшем интенсивно размножаются митозом и количество их увеличивается; в результате стенка нервной трубки утолщается. В этой стадии развития в ней можно выделить три слоя: внутренний эпендимный слой, характеризующийся активным митотическим делением клеток; средний слой - мантийный (плащевой), клеточный состав которого пополняется как за счет митотического деления клеток этого слоя, так и путем перемещения их из внутреннего эпендимного слоя; наружный слой, называемый краевой вуалью. Последний слой образуется отростками клеток двух предыдущих слоев. В дальнейшем клетки внутреннего слоя превращаются в эпендимоциты, выстилающие центральный канал спинного мозга. Клеточные элементы мантийного слоя дифференцируются в двух направлениях: часть их превращается в нейроны, другая часть - в глиальные клетки:

Схема дифференцировки нервной системы человека :

Вследствие интенсивного развития передней части медуллярной трубки образуются мозговые пузыри: вначале появляются два пузыря, затем задний пузырь делится еще на два. Образовавшиеся три пузыря дают начало переднему, среднему и ромбовидному мозгу. Впоследствии из переднего пузыря развиваются два пузыря, дающие начало конечному и промежуточному мозгу. А задний пузырь, в свою очередь, делится на два пузыря, из которых образуется задний мозг и продолговатый, или добавочный, мозг.

Таким образом, в результате деления нервной трубки и образования пяти мозговых пузырей с последующим их развитием формируются следующие отделы нервной системы:
передний мозг, состоящий из конечного и промежуточного мозга;
ствол мозга, включающий в себя ромбовидный и средний мозг.

Конечный, или большой, мозг представлен двумя полушариями (в него входят кора большого мозга, белое вещество, обонятельный мозг, базальные ядра).
К промежуточному мозгу относят эпиталамус, передний и задний тадамус, метапамус, гипоталамус.
Ромбовидный мозг состоит из продолговатого мозга и заднего, включающего в себя мост и мозжечок, средний мозг - из ножек мозга, покрышки и крышки среднего мозга. Из недифференцированной части медуллярной трубки развивается спинной мозг.
Полость конечного мозга образуют боковые желудочки, полость промежуточного мозга - III желудочек, среднего мозга - водопровод среднего мозга (сильвиев водопровод), ромбовидного мозга - IV желудочек и спинного мозга - центральный канал.

В дальнейшем идет быстрое развитие всей центральной нервной системы, но наиболее активно развивается конечный мозг, который начинает делиться продольной щелью большого мозга на два полушария. Затем на поверхности каждого из них появляются борозды, определяющие будущие доли и извилины.

На 4-м месяце развития плода человека появляется поперечная щель большого мозга, на 6-м - центральная борозда и другие главные борозды, в последующие месяцы - второстепенные и после рождения - самые мелкие борозды.

В процессе развития нервной системы важную роль играет миелинизация нервных волокон, в результате которой нервные волокна покрываются защитным слоем миелина и значительно вырастает скорость проведения нервных импульсов. К концу 4-го месяца внутриутробного развития миелин выявляется в нервных волокнах, составляющих восходящие, или афферентные (чувствительные), системы боковых канатиков спинного мозга, тогда как в волокнах нисходящих, или эфферентных (двигательных), систем миелин обнаруживается на 6-м месяце. Приблизительно в это же время наступает миелинизация нервных волокон задних канатиков. Миелинизация нервных волокон корково-спинномозговых путей начинается на последнем месяце внутриутробной жизни и продолжается в течение года после рождения. Это свидетельствуются о том, что процесс миелинизации нервных волокон распространяется вначале на филогенетически более древние, а затем - на более молодые структуры. От последовательности миелинизации определенных нервных структур зависит очередность формирования их функций. Формирование функции и также зависит и от дифференциации клеточных элементов и их постепенного созревания, которое длится в течение первого десятилетия.

В постнатальном периоде постепенно происходит окончательное созревание всей нервной системы, в частности ее самого сложного отдела - коры большого мозга, играющей особую роль в мозговых механизмах условно-рефлекторной деятельности, формирующейся с первых дней жизни. Еще один важный этап в онтогенезе это период полового созревания, когда проходит и половая дифференцировка мозга.