Глаз как оптическая система. Вспышки в глазах - причины появления, лечение. Каковы фокусные расстояния человеческого глаза

29-04-2012, 14:11

Описание

Восприятие предметов внешнего мира осуществляется глазом путем анализа изображения предметов на сетчатой оболочке. В сетчатке происходит сложный фотохимический процесс, приводящий к трансформации воспринятой световой энергии в нервные импульсы. Эти импульсы проводятся по нервным волокнам к зрительным центрам коры головного мозга, где происходит их превращение в зрительное ощущение и восприятие. Далее рассматривается только первая часть процесса - формирование изображения оптической системой глаза. При этом учитываются помехи, свойственные этой системе. Данные о морфологическом строении глаза приводятся только в той степени, в какой это необходима для понимания особенностей оптической системы глаза,

Оптические элементы глаза

Оптическую систему глаза можно рассматривать как систему линз, образованных различными прозрачными тканями и волокнами. Различие «материала» этих естественных линз вызывает различие в их оптических характеристиках и в первую очередь в показателе преломления. Оптическая система глаза создает на сетчатке действительное изображение наблюдаемого объекта.

Форма нормального глаза близка к сфере. Для взрослого человека диаметр сферы глазного яблока составляет примерно 25 мм. Масса его около 78 г. При аметропии сферическая форма обычно нарушается. Переднезадний размер оси, называемый также сагиттальным, при миопии обычно превышает вертикальный и горизонтальный (или поперечный). Глаз при этом имеет уже не сферическую, а эллиптическую форму. При гиперметропии, наоборот, глаз, как правило, несколько сплющен в продольном направлении сагиттальный размер меньше вертикального и поперечного.


Прижизненное измерение переднезадней оси глаза в настоящее время не вызывает затруднений. Для этого используется эхобиометрия (метод, основанный на применении ультразвука) или рентгеновский метод. Определение этой величины важно для решения ряда диагностических задач. Необходимо оно также для определения истинного значения масштаба изображения элементов глазного дна.

Рассмотрим основные элементы оптической системы глаза с точки зрения геометрической и физической оптики.

Роговица. Диаметр роговицы взрослого человека колеблется от 10 до 12 мм. Роговица более выпукла, чем остальная поверхность глазного яблока. Радиус кривизны передней поверхности роговицы составляет в среднем 7,6-7,8 мм, задней поверхности ее - около 6,8 мм, толщина в центральной части - 0,5-0,9 мм. Форма передней поверхности роговицы отличается от сферы. Со сферой практически совпадает только центральная часть диаметром около 4 мм. Дальше от центра появляется ряд неровностей, заметно уменьшается кривизна, что дало основание считать форму роговицы близкой к эллипсоиду или другой кривой второго порядка. К вопросу о форме роговицы мы вернемся при рассмотрении аберраций глаза, так как именно форма передней поверхности роговицы, граничащей с воздухом, больше всего влияет на сферическую аберрацию глаза.

Роговица представляет собой оболочку почти равной толщины, лишь слегка утолщающуюся к периферии.


Это означает, что изолированная роговица работает как слабая отрицательная (рассеивающая) линза, что на первый взгляд кажется несколько неожиданным. Как показывает расчет, преломляющая сила изолированной роговицы усредненного глаза равна: 5,48 дптр, а ее переднее и заднее фокусные расстояния f=f" = -1825 мм. Эти цифры относятся только к изолированной роговице, окруженной с обеих сторон воздухом. В живом глазу роговица находится совсем в иных условиях. С воздухом граничит только ее передняя поверхность, задняя же соприкасается с водянистой влагой передней камеры, показатель преломления которой мало отличается от такового роговицы. Вследствие этого падающие на глаз лучи, пройдя роговицу, отклоняющую их к оптической оси, при входе в водянистую влагу почти не изменяют своего направления. В этих условиях роговица работает как сильная положительная (собирательная) линза, при этом переднее и заднее фокусные расстояния ее различаются: f = -17,055 мм, a f - 22,785 мм. Преломляющая сила роговицы как составляющей оптической системы глаза (Dp), равна 43,05 дптр. То, что переднее фокусное расстояние отрицательно, а заднее положительно, указывает, что линза действует как положительная. Изменение преломляющей силы роговицы в зависимости от граничащей с ней среды можно проиллюстрировать на примере человека, плывущего под водой. Для пловца все предметы теряют свои очертания, кажутся размытыми. Это объясняется тем, что преломляющее действие роговицы становится меньше, когда она граничит не с воздухом, показатель преломления которого равен 1, а с водой, показатель преломления которой 1,33. В результате оптическая сила глаза в воде уменьшается и изображение объекта формируется уже не на сетчатке, а позади нее. Глаз становится как бы гиперметропическим. Чтобы получить резкое изображение объекта на сетчатке, пловец при погружении в воду должен надеть очки с положительными линзами. Учитывая, что разница в показателях преломления стекла и воды невелика, оптическая сила линз должна быть очень большой - порядка 100 дптр, т. е. фокусное расстояние 1 см.

Для понимания некоторых особенностей работы глаза, в частности его реакции на поляризованный свет, необходимо знать, что некоторые группы волокон роговицы обладают различными видами оптической анизотропии .

Хрусталик. Хрусталик имеет форму двояковыпуклой линзы с закругленными краями. У детей он бесцветен и эластичен, у взрослых более упруг, к старости становится жестким, мутноватым, приобретает желтоватый оттенок. Хрусталик образован прозрачными волокнами эпителия, более плотными в центральной части и более мягкими на периферии. В связи с этим в середине ядра показатель преломления выше, чем на периферии, на 1,5 %. Условно считается, что обе поверхности хрусталика представляют собой части правильной сферы. В действительности они ближе к кривым второго порядка; кривизна обеих поверхностей в центре больше, чем на периферии, т. е., как и у роговицы, центральная часть хрусталика почти сферическая, а по краям уплощается.

Преломляющая сила изолированного хрусталика составляет 101,8 дптр, фокусное расстояние его равно 9,8 мм. Хрусталик, находящийся в естественных условиях, окруженный водянистой влагой и стекловидным телом, имеет фокусное расстояние 69,908 мм и оптическую силу всего 19,11 дптр.

Итак, несмотря на то что изолированный хрусталик является более сильной положительной линзой, чем изолированная роговица, элементом наибольшей оптической силы в глазу человека служит роговица.

Разброс спектрального пропускания для различных глаз весьма значителен. Зависит он и от возраста. Замечено, что к старости, когда хрусталик желтеет и пропускает меньше голубого и зеленого света, объекты представляются наблюдателю более желтыми. Этим иногда объясняют изменение цветовой гаммы в картинах в зависимости от возраста художника.

Передняя и задняя камеры заполнены прозрачной водянистой влагой. Очень сходно по химическому составу с камерной влагой стекловидное тело, одинаковы и их показатели преломления.

Оболочки глаза. Общеизвестна аналогия глаза и фотоаппарата. Так же как в фотоаппарате, в глазу отделы, функция которых заключается в формировании и приеме изображения, отделены от постороннего света «кожухом» - стенками глазного яблока. Стенки эти образуются тремя оболочками: наружной - склерой,средней - сосудистой (хориоидея) и внутренней - сетчаткой, служащей светочувствительным слоем.

Однако в отличие от фотокамеры, стенки которой совершенно непрозрачны и свет попадает на светочувствительный слой пленки только через объектив, оболочки глаза пропускают на сетчатку некоторую часть света не через зрачок, а через склеру - твердую соединительную оболочку толщиной от 0,5 до 1 мм. При освещении: склеры очень ярким светом (например, при диафаноекопии) хорошо видно, как светится внутренняя поверхность глазного яблока. Этого света не хватает обычно-для офтальмоскопии, но вполне достаточно для выявления опухолей и других изменений плотности, толщины и пигментации оболочек глаза. Такое различие в прозрачности «кожуха» глаза и фотокамеры является весьма существенным при рассмотрении глаза как оптической системы. Интересно также, что малая прозрачность глазного яблока обусловлена в основном оптической плотностью не склеры, а хориоидеи.

Хориоидея - это мягкая сосудистая оболочка, состоящая из сети кровеносных сосудов, питающих глаз. Со стороны, обращенной к сетчатке, она покрыта слоем пигментного эпителия, служащего главной защитой глаза от постороннего света. Именно благодаря поглощению в пигментном эпителии внутренняя поверхность глазного яблока имеет очень малый коэффициент отражения (5-10 %). Остальная часть падающего света поглощается этим слоем. В различных участках хориоидеи пигментация неодинакова. Так, в области заднего полюса, где сосуды расположены гуще, пигментация сильнее, поэтому невооруженному глазу эта часть оболочки представляется пятнисто-коричневой. Темное пятно выделяется также в области центральной ямки. При увеличении, например при офтальмоскопии, здесь заметна мелкая пятнистость, вызываемая неодинаковой пигментацией клеток. Степень пигментации зависит от общей окраски. У брюнетов пигментация сильнее, у альбиносов она вообще отсутствует, что приводит к резкому снижению зрения, так как на изображение объекта, формируемое оптической системой глаза, накладывается яркий посторонний свет, прошедший через склеру.

Таким образом, одно из существенных отличий оптической системы глаза от фотокамеры - частичная проницаемость оболочек глаза для света, вызывающая в некоторых условиях помехи в виде вуали и снижающая контрастность основного сетчаточного изображения . Эта особенность глаза имеет и положительную сторону, она широко используется в офтальмологии для диагностики, например, при диафаноскопии, при локализации поражений на глазном дне и т. п. Пигментный эпителий имеется не у всех животных (так, например, у крокодила глазное дно белое). Следствие такого различия в строении глазного яблока становится понятным из следующего рассуждения. При отсутствии пигмента внутренняя поверхность глазного яблока светлая, т. е. обладает большим коэффициентом отражения. В результате свет, попадающий в глаз через малое отверстие - зрачок, претерпевает многократное отражение от внутренней поверхности глазного яблока, и освещенность всей его внутренней поверхности становится почти равномерной. Контрастность изображения объекта на этом светлом фоне резко снижается, восприятие ухудшается. Работа глаза, лишенного пигментного эпителия, напоминает известный в светотехнике интегрирующий шар Ульбрихта , внутренняя поверхность которого покрыта белой матовой краской. Свет, поступающий в шар через малое отверстие, претерпевает многократное отражение и коэффициент интегрального отражения доходит до 90 %. Опыт показывает, что глаз человека работает не так. При наблюдении объекта вуали не ощущается. Этому способствует наличие пигментного эпителия.

Значительное поглощение света пигментным эпителием наглядно подтверждается и при офтальмоскопии. Если освещенное офтальмоскопом поле ограничено диафрагмой, то врач видит на глазном дне пациента ярко освещенный круг на темном поле. Заметной засветки фона не наблюдается.


Реальная схема освещения глаза светом, проходящим через зрачок глаза, показана на рисунке. Падающий через зрачок и преломленный прозрачными средами глаза свет формирует изображение объекта на каком-то участке сетчатки N. При этом большая часть световой энергии, сконцентрированной в изображении, поглощается пигментом, трансформируется в нервные импульсы и превращается в зрительное ощущение. Таким образом, изображение воспринимается и анализируется высшими центрами. Однако, вследствие того что пигмент не является абсолютно черным телом, некоторая доля световой энергии (около 5-10%) диффузно отражается на неосвещенную поверхность глазного дна. Этот отраженный свет вновь поглощается пигментным эпителием, создавая слабую вуаль. Примерно 1 % света вторично отражается и вновь попадает на поверхность глазного дна. Вторичное отражение очень мало влияет на качество изображения, а дальнейшие отражения не имеют практического значения.

Таким образом, эффект засветки всей поверхности сетчатки глаза человека отраженным светом вследствие высокого коэффициента поглощения пигментного эпителия незначителен, но все же при рассмотрении работы глаза им не следует пренебрегать.

Статья из книги: .

Человеческий глаз часто приводят в качестве примера удивительной природной инженерии - но судя по тому, что это один из 40 вариантов устройств, которые появлялись в процессе эволюции у разных организмов, нам стоит поумерить свой антропоцентризм и признать, что по строению человеческий глаз не является чем-то совершенным.

Рассказ про глаз учше всего начать с фотона. Квант электромагнитного излучения неспешно влетает строго в глаз ничего не подозревающего прохожего, который жмурится от неожиданного блика с чьих-то часов.

Первая деталь оптической системы глаза - это роговица. Она меняет направление движения света. Это возможно благодаря такому свойству света, как преломление, ответственного в том числе за радугу. Скорость света постоянна в вакууме - 300 000 000 м/с. Но при переходе из одной среды в другую (в данном случае из воздуха в глаз) свет меняет свою скорость и направление движения. У воздуха коэффициент преломления равен 1,000293, у роговицы - 1,376. Это значит, что луч света в роговице замедляет свое движение в 1,376 раз и отклоняется ближе к центру глаза.

Любимый способ раскалывать партизан - светить им яркой лампой в лицо. Это больно по двум причинам. Яркий свет - это мощное электромагнитное излучение: триллионы фотонов атакуют сетчатку, и ее нервные окончания вынуждены передавать бешеное количество сигналов в мозг. От перенапряжения нервы, как провода, перегорают. При этом мышцы радужки вынуждены сжиматься так сильно, как только могут, отчаянно пытаясь закрыть зрачок и защитить сетчатку.

И подлетает к зрачку. С ним все просто - это отверстие в радужной оболочке. За счет круговых и радиальных мышц радужная оболочка может соответственно сужать и расширять зрачок, регулируя количество света, проникающего в глаз, как диафрагма в фотоаппарате. Диаметр зрачка человека может меняться от 1 до 8 мм в зависимости от освещенности.

Пролетев сквозь зрачок, фотон попадает на хрусталик - вторую линзу, ответственную за его траекторию. Хрусталик преломляет свет слабее, чем роговица, зато он подвижен. Хрусталик висит на цилинарных мышцах, которые меняют его кривизну, тем самым позволяя нам фокусироваться на предметах на разном расстоянии от нас.

Именно с фокусом связаны нарушения зрения. Самые распространенные - близорукость и дальнозоркость. Изображение в обоих случаях фокусируется не на сетчатке, как должно, а перед ней (близорукость), или за ней (дальнозоркость). Виноват в этом глаз, который меняет форму с круглой на овальную, и тогда сетчатка удаляется от хрусталика или приближется к нему.

После хрусталика фотон пролетает сквозь стекловидное тело (прозрачный студень - 2/3 объема всего глаза, на 99% - вода) прямиком на сетчатку. Здесь регистрируются фотоны, и сообщения о прибытии отправляются по нервам в мозг.

Сетчатка устлана клетками-фоторецепторами: когда света нет, они вырабатывают специальные вещества - нейротрансмиттеры, но как только в них попадает фотон, клетки-фоторецепторы перестают их вырабатывать - и это сигнал для мозга. Есть два типа этих клеток: палочки, которые более чувствительны к свету, и колбочки, которые лучше различают движение. Палочек у нас около ста миллионов и еще 6-7 миллионов колбочек, итого больше ста миллионов светочувствительных элементов - это больше 100 мегапикселей, что никакому «хасселю» не снилось.

Слепое пятно - точка прорыва, где совсем нет светочувствительных клеток. Оно довольно большое - 1-2 мм в диаметре. К счастью, у нас бинокулярное зрение и есть мозг, который совмещает две картинки c пятнами в одну нормальную.

На моменте передачи сигнала в человеческом глазу возникает проблема с логикой. Подводный, не особо нуждающийся в зрении житель осьминог в этом смысле гораздо последовательней. У осьминогов фотон сначала врезается в слой колбочек и палочек на сетчатке, сразу за которым ждет слой нейронов и передает сигнал в мозг. У человека свет сперва продирается сквозь слои нейронов - и только потом ударяется в фоторецепторы. Из-за этого в глазу есть первое пятно - слепое.

Второе пятно - желтое, это центральная область сетчатки прямо напротив зрачка, чуть выше зрительного нерва. Этим местом глаз видит лучше всего: концентрация светочувствительных клеток здесь сильно увеличена, поэтому наше зрение по центру визуального поля значительно острее периферийного.

Изображение на сетчатке перевернуто. Мозг умеет правильно интерпретировать картинку, и восстанавливает из перевернутого оригинальное изображение. Дети первые пару дней видят все вверх ногами, пока их мозг устанавливает свой фотошоп. Если надеть очки, переворачивающие изображение (это впервые проделали еще в 1896 году), то через пару дней наш мозг научится интерпретировать и такую перевернутую картинку правильно.

Вспышки в глазах называют по-научному фотопсией. Они являются ложным ощущением в глазах света или искр, проявляются светящимися изображениями (пятнами, кольцами, линиями, огненными поверхностями, зигзагами и молниями, блеском и т.д.).

Подобные ощущения - результат неправильной стимуляции нейрорецепторов в либо прочих отделов зрительного анализатора. Явления эти относят к разновидности зрительных феноменов, называемых «энтоптическими».

Причины (почему появляются вспышки)

Вспышки, обусловленные механическими или электрическими раздражениями какого-то участка в зрительном анализаторе, определяют как . Они появляются, например, при пальцевом надавливании на внутренние либо наружные углы глаз.

Близкое происхождение к подобному ощущению имеют вспышки света, появляющиеся при резком движении глазами и . Они обусловлены механическим раздражением сетчатки, провоцируемым колеблющимся стекловидным телом.
На определении порога электрической чувствительности и построена методика исследований функции сетчатки и функции и зрительного нерва. Собственно, и сохранность сетчатки может быть оценена в связи с уровнем электрического раздражения, вызвавшего фосфен.

Ложные вспышки в глазах могут появляться вследствие развития хориоидитов, опухолей, при сетчатки, а также поражениях зрительного нерва. Обычно фосфены являются одним из ранних признаков вышеуказанных патологических процессов. Они могут являться следствием нарушения кровообращения сетчатки либо других отделов в зрительном анализаторе. Иллюстрацией этих вспышек может считаться «мерцательная» , называемая еще глазной мигренью. Яркие зигзаги, вспышки света и линии, в этом случае, зачастую предшествуют полной картине мигрени.

Подобные фосфены не поддаются лечению, правда, и зрению не вредят. Однако, обнаружив у себя похожие симптомы, стоит безотлагательно обратиться к офтальмологу. Ведь безобидные фосфены, могут быть вызваны нарушением целостности сетчатки. Особую настороженность необходимо проявить, при вспышках в глазах проявляющихся неожиданно и сопровождающихся потерей бокового зрения.

Лечение вспышек света перед глазами

Лечебные мероприятия при появлении вспышек в глазах направлены на устранение причины, вызвавшей данный симптом. При этом пациентом может заниматься как врач-офтальмолог (при разрывах и отсловнии сетчатки), так и другие специалисты - невролог или кардиолог (при ангиоспазмах, шейном остеохондрозе и т.д.).

В любом случае, если у Вас появился данный симптом обращайтесь сначала в специализированное офтальмологическое учреждение. Только здесь Вы сможете пройти полную диагностику и получить исчерпывающую консультацию высококвалифицированных специалистов-офтальмологов и исключить такие серьезные заболевания, как разрыв и сетчатки, которые могут привести к полной и невосстановимой слепоте.

Стоит помнить, что даже очень серьезные патологии глаз, как правило, развиваются бессимптомно. Поэтому не стесняйтесь проявить бдительность или подстраховаться, ведь восстанавливать зрение, значительно дороже, чем предотвратить опасность!

, хрусталик и стекловидное тело . Их совокупность называется диоптрическим аппаратом . В нормальных условиях происходит рефракция (преломление) лучей света от зрительной мишени роговицей и хрусталиком, гак что лучи фокусируются на сетчатке . Преломляющая сила роговицы (основного рефракционного элемента глаза) равна 43 диоптриям . Выпуклость хрусталика может изменяться, и его преломляющая сила варьируется между 13 и 26 диоптриями. Благодаря этому хрусталик обеспечивает аккомодацию глазного яблока к объектам, находящимся на близком или далеком расстоянии. Когда, например, лучи света от удаленного объекта входят в нормальный глаз (с расслабленной цилиарной мышцей), мишень оказывается на сетчатке в фокусе. Если же глаз направлен па ближний объект, они фокусируются позади сетчатки (т.е. изображение на ней расплывается), пока не произойдет аккомодация. Цилиарная мышца сокращается, ослабляя натяжение волокон пояска; кривизна хрусталика увеличивается, и в результате изображение фокусируется па сетчатке.

Роговица и хрусталик вместе составляют выпуклую линзу. Лучи света от объекта проходят через узловую точку линзы и образуют па сетчатке перевернутое изображение, как в фотоаппарате. Сетчатку можно сравнить с фотопленкой, поскольку обе они фиксируют зрительные изображения. Однако сетчатка устроена гораздо сложнее. Она обрабатывает непрерывную последовательность изображений, а также посылает в мозг сообщения о перемещениях зрительных объектов, угрожающих признаках, периодической смене света и темноты и другие зрительные данные о внешней среде.

Хотя оптическая ось человеческого глаза проходит через узловую точку хрусталика и точку сетчатки между центральной ямкой и диском зрительного нерва ( рис. 35.2), глазодвигательная система ориентирует глазное яблоко на участок объекта, называемый точкой фиксации. От этой точки луч света идет через узловую точку и фокусируется в центральной ямке; таким образом, он проходит вдоль зрительной оси. Лучи от остальных участков объекта фокусируются в области сетчатки вокруг центральной ямки ( рис. 35.5).

Фокусирование лучей на сетчатке зависит не только от хрусталика, но и от радужки . Радужка выполняет роль диафрагмы фотоаппарата и регулирует не только количество света, поступающего в глаз, но, что еще важнее, глубину зрительного поля и сферическую аберрацию хрусталика. При уменьшении диаметра зрачка глубина зрительного поля возрастает и лучи света направляются через центральную часть зрачка, где сферическая аберрация минимальна. Изменения диаметра зрачка происходят автоматически (т.е. рефлекторно) при настройке (аккомодации) глаза на рассматривание близких предметов. Следовательно, во время чтения или другой деятельности глаз, связанной с различением мелких объектов, качество изображения улучшается с помощью оптической системы глаза.

На качество изображения влияет еще один фактор - рассеивание света. Оно минимизируется путем ограничения пучка света, а также его поглощения пигментом сосудистой оболочки и пигментным слоем сетчатки. В этом отношении глаз снова напоминает фотоаппарат. Там рассеивание света тоже предотвращается посредством ограничения пучка лучей и его поглощения черной краской, покрывающей внутреннюю поверхность камеры.

Фокусирование изображения нарушается, если размер зрачка не соответствует преломляющей силе диоптрического аппарата. При миопии (близорукости) изображения удаленных объектов фокусируются перед сетчаткой, не доходя до нее ( рис. 35.6). Дефект корректируется с помощью вогнутых линз. И наоборот, при гиперметропии (дальнозоркости) изображения далеких предметов фокусируются позади сетчатки. Чтобы устранить проблему, нужны выпуклые линзы ( рис. 35.6). Правда, изображение можно временно сфокусировать за счет аккомодации, но при этом утомляются цилиарные мышцы и глаза устают. При астигматизме возникает асимметрия между радиусами кривизны поверхностей роговицы или хрусталика (а иногда сетчатки) в разных плоскостях. Для коррекции используются линзы со специально подобранными радиусами кривизны.

Упругость хрусталика с возрастом постепенно снижается. Падает эффективность его аккомодации при рассматривании близких предметов ( пресбиопия). В молодом возрасте преломляющая сила хрусталика может меняться в широком диапазоне, вплоть до 14 диоптрий. К 40 годам этот диапазон уменьшается вдвое, а после 50 лет - до 2 диоптрий и ниже. Пресбиопия корректируется выпуклыми линзами.

Человеческий глаз - замечательное достижение эволюции и отличный оптический инструмент. Порог чувствительности глаза близок к теоретическому пределу, обусловленному квантовыми свойствами света, в частности дифракцией света. Диапазон воспринимаемых глазом интенсивностей составляет, фокус может быстро перемещаться от очень короткого расстояния до бесконечности.
Глаз является системой линз, которая формирует перевернутое действительное изображение на светочувствительной поверхности. Глазное яблоко имеет приблизительно сферическую форму с диаметром около 2,3см . Внешняя его оболочка является почти волокнистым непрозрачным слоем, называемым склерой . Свет поступает в глаз через роговицу, представляющую собой прозрачную оболочку на внешней стороне поверхности глазного яблока. В центре роговицы расположено цветное кольцо – радужкой (радужная оболочка) со зрачком посредине. Они действуют подобно диафрагме, осуществляя регуляцию поступления света в глаз.
Хрусталик представляет собой линзу, состоящую из волокнистого прозрачного материала. Его форма и, следовательно, фокусное расстояние могут изменяться с помощью цилиарных мышц глазного яблока. Пространство между роговицей и линзой заполнено водянистой жидкостью и называется передней камерой . За линзой расположено прозрачное желеобразное вещество, называемое стекловидным телом .
Внутренняя поверхность глазного яблока покрыта сетчаткой , которая содержит многочисленные нервные клетки - зрительные рецепторы: палочки и колбочки, которые отвечают на зрительные раздражения, генерируя биопотенциалы. Наиболее чувствительной областью сетчатки является желтое пятно , где содержится наибольшее число зрительных рецепторов. Центральная часть сетчатки содержит только плотно упакованные колбочки. Глаз вращается, чтобы рассмотреть изучаемый объект.

Рис. 1. Глаз человека

Преломление в глазе

Глаз является оптическим эквивалентом обычной фотографической камеры. В нем есть система линз, апертурная система (зрачок) и сетчатка, на которой фиксируется изображение.

Система линз глаза сформирована из четырех преломляющих сред: роговицы, водяной камеры, хрусталика, стеклянного тела. Показатели их преломления не имеют значительных отличий. Они составляют 1,38 для роговицы, 1,33 для водяной камеры, 1,40 для хрусталика и 1,34 для стекловидного тела (рис. 2).

Рис. 2. Глаз как система преломляющих сред (числа являются показателями преломления)

В этих четырех преломляющих поверхностях происходит преломление света: 1) между воздухом и передней поверхностью роговицы; 2) между задней поверхностью роговицы и водяной камерой; 3) между водяным камерой и передней поверхностью хрусталика; 4) между задней поверхностью хрусталика и стекловидным телом.
Наиболее сильное преломление происходит на передней поверхности роговицы. Роговица имеет небольшой радиус кривизны, и показатель преломления роговицы в наибольшей степени отличается от показателя преломления воздуха.
Преломляющая способность хрусталика меньше, чем у роговицы. Она составляет около одной трети общей преломляющей мощности систем линз глаза. Причина этого различия в том, что жидкости, окружающие хрусталик, имеют показатели преломления, которые существенно не отличаются от показателя преломления хрусталика. Если хрусталик удалить из глаза, окруженный воздухом он имеет показатель преломления почти в шесть раз больший, чем в глазе.

Хрусталик выполняет очень важную функцию. Его кривизна может изменяться, что обеспечивает тонкое фокусирование на объекты, расположенные на различных расстояниях от глаза.

Редуцированный глаз

Редуцированный глаз является упрощенной моделью реального глаза. Он схематически представляет оптическую систему нормального глаза человека. Редуцированный глаз представлен единственной линзой (одной преломляющей средой). В редуцированном глазе все преломляющие поверхности реального глаза суммируются алгебраически, формируя единственную преломляющую поверхность.
Редуцированный глаз позволяет провести простые вычисления. Общая преломляющая способность сред составляет почти 59 диоптрий, когда линза аккомодирована на зрение отдаленных объектов. Центральная точка редуцированного глаза лежит впереди сетчатки на 17 миллиметров. Луч из любой точки объекта приходит в редуцированный глаз и проходит через центральную точку без преломления. Так же, как стеклянная линза формирует изображение на листе бумаги, система линз глаза образует изображение на сетчатке. Это уменьшенное, действительное, перевернутое изображение объекта. Головной мозг формирует восприятие объекта в прямом положении и в реальном размере.

Аккомодация

Для ясного видения объекта необходимо, чтобы после преломления лучей, изображение формировалось на сетчатке. Изменение преломляющей силы глаза для фокусировки близких и отдаленных объектов называется аккомодацией .
Наиболее отдаленная точка, на которую фокусируется глаз, называется дальней точкой видения - бесконечность. В этом случае параллельные лучи, входящие в глаз, фокусируются на сетчатку.
Объект виден в деталях, когда он установлен как можно ближе к глазу. Минимальное расстояние четкого видения – около 7 см при нормальном зрении. В этом случае аппарат аккомодации находится в максимально напряжённом состоянии.
Точка, расположенная на расстоянии 25см , называется точкой наилучшего видения , поскольку в данном случае различимы все детали рассматриваемого объекта без максимального напряжения аппарата аккомодации, вследствие чего глаз может длительное время не утомляться.
Если глаз сфокусирован на объект в ближней точке, он должен отрегулировать свое фокусное расстояние и увеличить преломляющую силу. Этот процесс происходит путем изменений формы хрусталика. Когда объект подносят ближе к глазу, форма хрусталика изменяется от формы умеренно выпуклой линзы в форму выпуклой линзы.
Хрусталик образован волокнистым желеобразным веществом. Он окружен прочной гибкой капсулой и имеет специальные связки, идущие от края линзы к внешней поверхности глазного яблока. Эти связки постоянно напряжены. Форма хрусталика изменяется цилиарной мышцей . Сокращение этой мышцы уменьшает натяжение капсулы хрусталика, он становится более выпуклым и из-за естественной эластичности капсулы принимает сферическую форму. И наоборот, когда цилиарная мышца полностью расслаблена, преломляющая сила линзы наиболее слабая. С другой стороны, когда цилиарная мышца находится в максимально сокращенном состоянии, преломляющая сила линзы становится наибольшей. Этот процесс управляется центральной нервной системой.

Рис. 3. Аккомодация в нормальном глазе

Старческая дальнозоркость

Преломляющая сила хрусталика может увеличиваться от 20 диоптрий до 34 диоптрий у детей. Средняя аккомодация составляет 14 диоптрий. В результате общая преломляющая сила глаза составляет почти 59 диоптрий, когда глаз аккомодирован для дальнего зрения, и 73 диоптрия - при максимальной аккомодации.
При старении человека хрусталик становиться более толстым и менее эластичным. Следовательно, способность линзы изменять свою форму уменьшается с возрастом. Сила аккомодации уменьшается от 14 диоптрий у ребенка до менее 2 диоптрий в возрасте от 45 до 50 лет и становится равной 0 в возрасте 70 лет. Поэтому линза почти не аккомодируется. Это нарушение аккомодации называется старческой дальнозоркостью . Глаза при этом сфокусированы всегда на постоянном расстоянии. Они не могут аккомодироваться как для ближнего, так и дальнего зрения. Следовательно, чтобы видеть ясно на различных расстояниях, старый человек должен носить бифокальные очки с верхним сегментом, сфокусированным для дальнего видения, и более низким сегментом, сфокусированным для ближнего видения.

Ошибки преломления

Эмметропия . Считается, что глаз будет нормальным (эмметропичным), если параллельные световые лучи с отдаленных объектов фокусируются в сетчатку при полном расслаблении цилиарной мышцы. Такой глаз видит ясно отдаленные объекты, когда расслаблена цилиарная мышца, то есть без аккомодации. При фокусировании объектов ближнего диапазона расстояний в глазе сокращается цилиарная мышца, обеспечивая подходящую степень аккомодации.

Рис. 4. Преломление параллельных световых лучей в глазе человека.

Гиперметропия (гиперопия). Гиперметропия также известна как дальнозоркость . Она обусловлена либо малым размером глазного яблока, либо слабой преломляющей силой системы линз глаза. В таких условиях параллельные световые лучи не преломляются системой линз глаза достаточно для того, чтобы фокус (соответственно изображение) находился на сетчатке. Для преодоления этой аномалии цилиарная мышца должна сократиться, увеличив оптическую силу глаза. Следовательно, дальнозоркий человек способен фокусировать отдаленные объекты на сетчатке, используя механизм аккомодации. Для видения более близких объектов мощности аккомодации не хватает.
При небольшом резерве аккомодации дальнозоркий человек часто не способный аккомодировать глаз достаточно для фокусирования не только близких, но даже отдаленных объектов.
Для коррекции дальнозоркости необходимо увеличить преломляющую силу глаза. Для этого используют выпуклые линзы, которые добавляют преломляющую силу к силе оптической системе глаза.

Миопия . При миопии (или близорукости) параллельные световые лучи с отдаленных объектов фокусируются перед сетчаткой, несмотря на то, что цилиарная мышца полностью расслаблена. Это бывает из-за слишком длинного глазного яблока, а также вследствие слишком высокой преломляющей силы оптической системы глаза.
Нет механизма, с помощью которого глаз мог бы уменьшить преломляющую силу своего хрусталика менее, чем возможно при полном расслаблении цилиарной мышцы. Процесс аккомодации приводит к ухудшению видения. Следовательно, человек с миопией не может фокусировать отдаленные объекты на сетчатку. Изображение может сфокусироваться только, если объект находится достаточно близко от глаза. Следовательно, у человека с миопией ограничена дальняя точка ясного видения.
Известно, что лучи, проходящие через вогнутую линзу, преломляются. Если преломляющая сила глаза слишком велика, как при миопии, иногда она может быть нейтрализована вогнутой линзой. Используя лазерную технику, можно также откорректировать слишком большую выпуклость роговицы.

Астигматизм . В астигматическом глазе преломляющая поверхность роговицы является не сферической, а эллипсоидальной. Это происходит из-за слишком большой кривизны роговицы в одной из своих плоскостей. В результате световые лучи, проходящие через роговицу в одной плоскости, не преломляются так же сильно, как лучи, проходящие через нее в другой плоскости. Они не собираются в общем фокусе. Астигматизм не может компенсироваться глазом с помощью аккомодации, но корректировать его можно с помощью цилиндрической линзы, которая исправит ошибку в одной из плоскостей.

Коррекция оптических аномалий контактными линзами

Недавно для коррекции различных аномалий зрения стали использовать пластические контактные линзы. Они устанавливаются против передней поверхности роговицы и фиксируются тонким слоем слез, который заполняет пространство между контактной линзой и роговицей. Жесткие контактные линзы делают из жесткой пластмассы. Их размеры составляют 1мм в толщину и 1см в диаметре. Также существуют мягкие контактные линзы.
Контактные линзы заменяют роговицу как внешнюю сторону глаза и почти полностью аннулируют долю преломляющей способности глаза, которая происходит в норме на передней поверхности роговицы. При использовании контактных линз передняя поверхность роговицы не играет значимой роли в преломлении глаза. Основную роль начинает выполнять передняя поверхность контактной линзы. Особенно важно это у лиц с ненормально сформированной роговицей.
Другой особенностью контактных линз является то, что, поворачиваясь вместе с глазом, они дают более широкую область ясного видения, чем это делают обычные очки. Они являются также более удобными в использовании для художников, спортсменов и т.п.

Острота зрения

Способность человеческого глаза ясно видеть мелкие детали ограничена. Нормальный глаз может различать различные точечные источники света, расположенные на расстоянии 25 секунд дуги. То есть, когда световые лучи с двух отдельных точек попадают в глаз под углом более 25 секунд между ними, они видны в качестве двух точек. Лучи с меньшим угловым разделением не могут быть различены. Это означает, что человек с нормальной остротой зрения может различить две точки света на расстоянии 10 метров, если они друг от друга находятся на расстоянии 2 миллиметра.

Рис. 7. Максимальная острота зрения для двух точечных источников света.

Наличие этого предела предусмотрено структурой сетчатки. Средний диаметр рецепторов в сетчатке составляет почти 1,5 микрометров. Человек может нормально различить две отдельные точки, если в сетчатке расстояние между ними составляет 2 микрометра. Таким образом, чтобы различать два небольших объекта, они должны возбудить две разных колбочки. По крайней мере, между ними один будет находиться 1 невозбужденная колбочка.