Инфракрасный скальпель. Преимущества инновационных лазерных методик над классической скальпельной техникой. Лечение больных с анатомо-топографическими особенностями строения мягких тканей полости рта

Обрезание (циркумцизия) - это хирургическая операция, в процессе которой с мужского полового члена убирают крайнюю плоть . Данная процедура является необязательной, но иногда её проводят по различным причинам: медицинским, религиозным и т.д. На сегодняшний день обрезание проводят с помощью традиционного скальпеля или современного лазера. Что из них лучше и безопаснее?

Лазерный метод используют не только в обрезании, но и в удалении различных косметических дефектов (родинок, папиллом, бородавок и т.д.), эрозии шейки майки. Луч лазера “сжигает” слои кожи, в результате чего новообразования устраняются.

В процессе операции хирург оттягивает крайнюю плоть и сильно натягивает её. Затем он воздействует на кожу лазерным лучом, и крайняя плоть иссекается. На место воздействия накладываются саморассасывающиеся швы и дезинфицирующая повязка.

Операция проводится под местным наркозом и длится 20-30 минут . Преимуществами лазерного обрезания являются:

  1. Минимальная травматичность . Лазерный луч иссекает мягкие ткани максимально ровно, без кромсания, в отличие от скальпеля. Благодаря этому боль и отёк в первые дни после операции не так сильно выражены.
  2. Отсутствие кровотечения . Кровеносные сосуды коагулируются под действием лазера, поэтому кровотечения не возникает.
  3. Стерильность . Лазерное излучение нагревает слои кожи, и в результате этого все патогенные микроорганизмы погибают под действием высоких температур.
  4. Быстрое восстановление . Реабилитация после лазерной циркумцизии длится в несколько раз короче, чем после скальпельной. Пациенты возвращаются к привычному образу жизни (с некоторыми ограничениями) уже через 3-5 дней.
  5. Высокий эстетический результат . После лазерного обрезания не остаётся швов, шрамов и рубцов, так как края раны запаиваются и накладываются саморассасывающиеся швы.
  6. Безопасность и минимальный риск развития осложнений . После воздействия лазера очень редко возникают воспалительные процессы и другие патологии, поэтому данный метод является наиболее безопасным.

Недостатком данной процедуры является только её сравнительно высокая стоимость - скальпельная циркумцизия стоит намного дешевле.

Скальпель является основным хирургическим инструментом во время операций. Он представляет собой небольшой острый нож, с помощью которого проводится разрезание и иссечение мягких тканей.

Перед операцией пациенту обязательно вводят обезболивающие уколы . Затем половой член перевязывается специальной ниткой возле головки, чтобы случайно не задеть скальпелем ткани, которые не требуется отрезать.

После перевязывания хирург оттягивает крайнюю плоть и иссекает её с помощью скальпеля. После этого на место воздействия накладываются саморассасывающиеся швы. Раньше мягкие ткани в процессе операции промокали тампонами, чтобы остановить кровотечение. На сегодняшний день в процессе операции также используют коагуляторы (электроды), которые прижигают кровеносные сосуды и останавливают кровотечение.

Сравнение

Лазер и скальпель используются для удаления крайней плоти полового члена - благодаря этому значительно снижается риск развития инфекционных заболеваний мочеполовой системы, улучшается гигиеническое состояние пениса (так как под головкой перестают накапливаться грязь и различные выделения, являющиеся благоприятной средой для размножения бактерий), удлиняется половой акт.

Оба метода одинаково популярны на сегодняшний день. Скальпельный способ выбирают многие пациенты, так как он более привычен, и многие знают его принцип действия. Однако данный метод, по сравнению с лазером, имеет ряд недостатков:

  • Вызывает кровотечение (но капельки крови прижигаются электродами).
  • Есть риск занесения инфекции.
  • Операция длится в 2 раза дольше.
  • Врач случайно может отрезать лишний участок кожи.
  • Более долгий период реабилитации (до 1 месяца).
  • Неприятные ощущения после операции выражены более сильно, чем после лазерного воздействия.

И лазерное, и скальпельное обрезание можно проводить в любом возрасте - операцию делают даже младенцам через несколько дней после рождения.

Противопоказания у обоих процедур одинаковые:

  • Онкологические заболевания.
  • Заболевания крови, нарушения свёртываемости крови.
  • Иммунные нарушения.
  • Вирусные и простудные заболевания.
  • Инфекционно-воспалительные патологии.
  • Половые инфекции.
  • Венерические болезни.
  • ВИЧ и СПИД.
  • Незажившие травмы в области обрезания.

После циркумцизии (любым способом) некоторое время посещать сауну, баню, бассейн, принимать ванну (мыться в душе), физические нагрузки. Обычно ограничения снимаются через 2 недели после операции.

Что лучше

На сегодняшний день лазер является более безопасным и современным способом удаления крайней плоти - он не вызывает кровотечения, аккуратно иссекает мягкие ткани, имеет короткий срок реабилитации. Поэтому предпочтительнее выбрать именно этот метод.

Скальпельный метод подходит тем, кто не готов платить за процедуру большую сумму. Иногда операцию по медицинским показаниям проводят бесплатно в государственных больницах.

Перед операцией потребуется сдать некоторые анализы (на половые инфекции, ВИЧ, анализ крови и мочи) и пройти ряд обследований, чтобы исключить противопоказания. Также нужно обязательно проконсультироваться с врачом и вместе с ним решить, какой способ обрезания использовать - лазерный или скальпельный. Иногда бывает так, что удалить крайнюю плоть можно только скальпелем. Также вместе с врачом пациент решает, какое количество крайней плоти можно удалить.

Обрезание должен проводить опытный врач-хирург . Неопытность врача может привести к серьёзным осложнениям. Лучше всего заплатить деньги и сделать операцию в специализированной клинике. Стоит учитывать, что клиника должна иметь лицензию.

Уникальные свойства лазерного излучения сделали лазеры незаменимыми в самых разных областях науки, в том числе и медицине. Лазеры в медицине открыли новые возможности в лечении многих заболеваний. Лазерную медицину можно условно разделить на основные разделы: лазерная диагностика, лазерная терапия и лазерная хирургия.

История пришествия лазеров в медицину — какие свойства лазера послужили причиной развития лазерной хирургии

Исследования в использовании лазеров в медицине начались в шестидесятых годах прошлого века. Тогда же и появились первые лазерные медицинские аппараты: устройства для облучения крови. Первые работы по применению лазеров в хирургии в СССР были проведены в 1965 году в МНИОИ им. Герцена совместно с НПП «Исток».

В лазерной хирургии используются достаточно мощные лазеры, способные сильно нагревать биологическую ткань, что приводит к ее испарению или разрезанию. Применение лазеров в медицине позволило выполнять ранее сложные или вовсе невозможные операции эффективно и с минимальной инвазивностью.

Особенности взаимодействия лазерного скальпеля с биологическими тканями:

  1. Отсутствие прямого контакта инструмента с тканью, минимальная опасность инфицирования.
  2. Коагулирующее действие излучения позволяет получить практически бескровные разрезы, останавливать кровотечение из кровоточащих ран.
  3. Стерилизующее действие излучения является профилактическим средством инфицирования операционного поля и развития послеоперационных осложнений.
  4. Возможность управления параметрами лазерного излучения позволяет получать необходимые эффекты при взаимодействии излучения с биологическими тканями.
  5. Минимальное воздействие на близлежащие ткани.

Применение лазера в хирургии дает возможность эффективно выполнять самые разнообразные оперативные вмешательства в стоматологии, урологии, оториноларингологии, гинекологии, нейрохирургии и т.д.

Плюсы и минусы применения лазеров в современной хирургии

Основные преимущества лазерной хирургии:

  • Значительное сокращение времени проведения операции.
  • Отсутствие непосредственного контакта инструмента с тканями и, как следствие, минимальное повреждение тканей в области проведения операции.
  • Сокращение послеоперационного периода.
  • Отсутствие кровотечения или минимальная кровоточивость при операции.
  • Уменьшение риска образования послеоперационных шрамов и рубцов.
  • Стерилизующее действие лазерного излучения позволяет соблюдать правила асептики.
  • Минимальный риск развития осложнений в ходе операции и в послеоперационный период.

Недостатки лазерных технологий в хирургии:

  • Незначительное число медицинских работников прошли специальную подготовку для работы с лазерами.
  • Приобретение лазерного оборудования требует значительных материальных затрат и увеличивает стоимость лечения.
  • Использование лазеров представляет определенную опасность для медицинских работников, поэтому они должны строго выполнять все меры предосторожности при работе с лазерным оборудованием.
  • Эффект от применения лазеров в некоторых клинических случаях может быть временным, и в дальнейшем может потребоваться проведение повторной операции.

Что может лазерная хирургия сегодня – все аспекты применения лазера в хирургии

В настоящее время лечение лазерами используется во всех разделах медицины. Наиболее широкое применение лазерные технологии нашли в офтальмологии, стоматологии, общей, сосудистой и пластической хирургии, урологии, гинекологии.

Лазеры в стоматологической хирургии применяются при проведении следующих операций: френэктомии, гингивэктомии, удалении капюшонов при перикоронарите, выполнении разрезов при установке имплантатов и других. Применение лазерных технологий в стоматологии позволяет уменьшить количество используемых анестетиков, избежать послеоперационных отеков и осложнений, ускорить время заживления послеоперационных ран.

Появление лазера кардинально изменило развитие офтальмологии. При помощи лазерного можно делать сверхточные разрезы вплоть до микрона, что не способна сделать рука даже очень опытного хирурга. В настоящее время при помощи лазера можно , глаукому, заболевания сетчатки глаза, проводить кератопластику и многие другие.

Лазерные технологии позволяют успешно устранять различные сосудистые патологии: венозные и артерио-венозные дисплазии, лимфангиомы, кавернозные гемангиомы и другие. Благодаря лазерам, лечение сосудистых заболеваний стало практически безболезненным с минимальным риском развития осложнений и хорошим косметическим эффектом.

Лазерный скальпель используется при проведении большого количества операций :

  • В брюшной полости (аппендэктомия, холецистэктомия, иссечение спаек, грыжесечение, резекция паренхиматозных органов и мн.др.).
  • На трахеобронхиальном дереве (удаление трахеальных и бронхиальных свищей, реканализация обтюрирующих опухолей бронхов и трахеи).
  • В оториноларингологии (исправление носовой перегородки, аденэктомия, удаление рубцовых стенозов наружного слухового прохода, тимпанотомия, удаление полипов и др.).
  • В урологии (удаление карцином, полипов, атеромы кожи мошонки).
  • В гинекологии (удаление кист, полипов, опухолей).

Применяются лазеры и в . Практически все клиники, занимающиеся проведением таких операций, имеют в своем арсенале лазерную аппаратуру. Проведение разрезов с помощью лазерного скальпеля позволяет избежать отеков, синяков, уменьшить риск инфицирования и развития осложнений.

Сложно назвать область медицины, где свойства лазерного излучения не нашли эффективного применения. Продолжающееся совершенствование лазерных технологий, обучение все большего количества медицинских работников работе с лазерами, возможно, приведут в ближайшее время к преобладанию лазерной хирургии над традиционными методами оперативного вмешательства.

Говоря о СО 2 лазере, необходимо отметить его общепризнанную эффективность в хирургии мягких тканей. Луч этого лазера с длиной волны 10 600 нм наиболее тропен к молекулам воды (Н 2 О). Исходя из того, что мягкие ткани человека на 60–80 % состоят из воды, поглощение излучения СО 2 лазера в них происходит наиболее выраженно и эффективно, обуславливая эффект абляции, иными словами, эффект «лазерного скальпеля». Абляция мягких тканей – необходимое и клинически значимое условие для выполнения различных видов хирургии.

Универсальность методики «лазерного скальпеля»

Многопрофильность нашего операционного отделения позволяет использовать данную методику – методику «лазерного скальпеля» – в хирургии, гинекологии, пластической хирургии, урологии.

Выделим особенности и преимущества взаимодействия «лазерного скальпеля» с биологическими тканями:

  • нет прямого контакта с тканью, а значит, нет опасности инфицирования. Луч не может являться переносчиком вирусов и бактерий (в том числе ВИЧ, вирусных гепатитов В и С). Разрез, выполненный лазером, является стерильным при любых условиях;
  • стерилизация ткани в операционном поле, подвергшейся обработке лазерным излучением, и возможность работать с инфицированными участками тканей. Эта возможность представляется поистине грандиозной для хирургов ;
  • возможность одноэтапного удаления инфицированной дермальной кисты с наложением первичного шва при условии отсутствия кровопотери и опасения раневой гематомы;
  • коагулирующее действие излучения, позволяющее получить практически бескровные разрезы. Удобство и скорость работы. Бескровность – это то состояние, которое позволяет хирургу комфортно работать там, где это необходимо. Из личного опыта: исправление врожденных и приобретенных деформаций губ качественно и симметрично можно выполнить только лазерным лучом;
  • минимальное термическое воздействие на окружающие ткани и известный биостимулирующий эффект лазера обуславливают быструю заживляемость раны и ощутимое сокращение послеоперационного периода.

Благодаря инновационным возможностям современных СО 2 лазеров, а именно модулируемым формам лазерного импульса, независимой регулировке глубины абляции, мощности и длины импульса, стало возможным сделать лазерные операции максимально эффективными и физиологичными при работе с различными типами тканей и показаний.

Важно понимать, что от компетентности специалиста зависит безопасность пациента, поэтому обучение врачей технологии работы с лазером – необходимое условие применения лазерных технологий в медицинской практике.

Являясь хирургом классической школы, я имел неоднозначное отношение к лазерному лучу. За время профессионального роста мне приходилось работать с несколькими лазерными системами, однако началом своего осознанного подхода к лазерной хирургии могу считать момент внедрения в клиническую практику нашего Центра СО 2 лазерной системы SmartXide2 компании DEKA . Выбор данной системы был обусловлен ее многофункциональностью для разных направлений медицины и наличием в ней ряда инновационных возможностей, напрямую влияющих на повышение эффективности и индивидуализацию подходов в хирургической практике:

  • модулируемые формы лазерного импульса Pulse Shape Design и возможность их выбора и изменения,
  • ступенчатая регулировка глубины абляции, так называемые стеки,
  • независимая друг от друга настройка параметров лазерного излучения: мощность, длина импульса, расстояние между точками, форма импульсов, стеки, геометрия сканируемой площади, порядок сканирования.

Первое использование СО 2 лазера в моей практике – удаление доброкачественных образований кожи. Использование лазерной системы дало неоспоримые преимущества, среди которых простота и скорость процесса, четкая визуализация края образования, возможность работать на любом участке тела, включая слизистые и подвижную часть века, эстетичность результата, быстрое заживление.

Недостатком лазерного воздействия можно считать затруднение при взятии биопсии.

Таким образом, лазерное воздействие можно считать наиболее приемлемым способом удаления доброкачественных образований.

Применение лазера SmartХide2 DOT для удаления подкожных образований, таких как атерома, фиброма и т. д., также является эффективным. Лазерный луч позволяет выполнять прецизионное рассечение слоев кожи. Оболочки кисты хорошо визуализированы. Данный метод незаменим при наличии перифокального воспаления и повышенной кровоточивости из-за полнокровия тканей. Во всех перечисленных случаях образование удавалось удалить полностью, послеоперационная рана отмечалась сухостью, отсутствием кровотечения, включая капиллярное. Раны во всех случаях ушивались без дренирования. Назначалась антибиотикотерапия. На контрольных осмотрах была отмечена положительная динамика, заживление ран первичным натяжением.

Клинические примеры

Клинический случай 1

Пациентка, 32 года. Предложена трансконъюнктивальная билатеральная блефаропластика с применением лазера. Через нижний свод конъюнктивального мешка осуществлен доступ к параорбитальной клетчатке (SP 3 W), избытки подвергнуты абляции (SP 6 W). Рана ушита одиночными швами Vicryl 6.0. В послеоперационном периоде отмечены отеки и синяки в меньшей степени по сравнению с классической методикой. Риски электротравмы глаза отсутствовали, так как электрокоагулятор не использовался.

Минусы: необходимость использования одноразовых конъюнктивальных экранов, что в свою очередь усиливает явления послеоперационного конъюнктивита.

Выводы: методика значительно облегчает работу хирурга, обеспечивает меньшую травматизацию тканей при операции. При одномоментном лазерном фракционном воздействии на кожу периорбитальной области (псевдоблефаропластике) данный метод незаменим.

Рис. 1 а. Фото до проведения операции

Рис. 1 б. Фото на 6-й день после проведения операции.

Клинический случай 2

Пациент, 23 года. Посттравматическая деформация губы. Предпринята попытка симметризации губ. В условиях операционной с электрокоагулятором по разметке было проведено моделирование верхней губы. Операция длилась 20 минут, стабильный гемостаз – +40 минут. Результат: пациент удовлетворен на 80 %. После анализа результата пациенту была предложена коррекция губы лазером SmartХide2. В режиме Smart Pulse 6W с помощью насадки 7” была выполнена абляция избыточной и рубцовой ткани верхней губы. Швы наложены Vicryl Rapide 5.0. Пациенту рекомендован уход за раной до исчезновения отека (до 14 дней). Через два месяца после операции результат удовлетворительный на 100 % для пациента и хирурга.

Минусы лазерного метода коррекции: не выявлены.

Выводы: на данном этапе считаю коррекцию деформаций губ СО 2 лазером лучшим методом из возможных.

Клинический случай 3

Пациентка, 44 года. Предложена пластика верхних век. Было выполнено иссечение избытка кожи верхнего века. Абляция участка круговой мышцы глаза, ее рассечение и удаление избытков параорбитальной клетчатки. Преимущества применения лазера – в скорости операции и чистоте раны.

Минусы: в связи с большим размером манипул лазера нужны идеально выверенные и точные движения хирурга для получения ровного операционного края.

Рис. 2 а. Фото пациентки до операции

Рис. 2 б. Фото пациентки через 4 месяца после проведения операции

Заключение

Показанные клинические случаи и результаты лазерной хирургии посредством системы SmartXide2 продемонстрировали ощутимое сравнительное преимущество данного метода над классическим хирургическим методом за счет лучшей эстетичности, сокращения времени реабилитации, меньшей травматизации тканей, отличной заживляемости раны и, как следствие, высокого процента удовлетворенности процедурой доктора и пациента.

Таким образом, считаю клинически целесообразным и экономически оправданным внедрение в медицинскую практику рассмотренной лазерной технологии. Уверен, что динамичное развитие лазерных технологий уже определило большое будущее за лазерной хирургией.

Давид Кочиев, Иван Щербаков
«Природа» №3, 2014

Об авторах

Давид Георгиевич Кочиев — кандидат физико-математических наук, заместитель директора Института общей физики им. А. М. Прохорова РАН по научной работе. Область научных интересов — лазерная физика, лазеры для хирургии.

Иван Александрович Щербаков — академик, академик-секретарь Отделения физических наук РАН, профессор, доктор физико-математических наук, директор Института общей физики РАН, заведующий кафедрой лазерной физики Московского физико-технического института. Награжден золотой медалью им. А. М. Прохорова РАН (2013). Занимается лазерной физикой, спектроскопией, нелинейной и квантовой оптикой, медицинскими лазерами.

Уникальная способность лазера максимально концентрировать энергию в пространстве, во времени и в спектральном диапазоне делают этот прибор незаменимым средством во многих областях человеческой деятельности, и в частности в медицине [ , ]. При лечении заболеваний происходит вмешательство в патологический процесс или болезненное состояние, что самым радикальным образом практикует хирургия. Благодаря прогрессу в науке и технологиях на смену механическим хирургическим инструментам приходят принципиально иные, в том числе лазерные.

Излучение и ткани

Если в качестве инструмента используется лазерное излучение, то его задача - вызвать изменения в биологической ткани (например, выполнить резекцию при операции, запускать химические реакции при фотодинамической терапии). Параметры лазерного излучения (длина волны, интенсивность, длительность воздействия) могут изменяться в широких пределах, что при взаимодействии с биологическими тканями дает возможность инициировать развитие различных процессов: фотохимических изменений, термической и фотодеструкции, лазерной абляции, оптического пробоя, генерации ударных волн и др.

На рис. 1 приведены длины волн лазеров, нашедших в той или иной степени применение в медицинской практике. Их спектральный диапазон простирается от ультрафиолетовой (УФ) до средней инфракрасной (ИК) области, а интервал плотностей энергии охватывает 3 порядка (1 Дж/см 2 - 10 3 Дж/см 2), интервал плотности мощности - 18 порядков (10 −3 Вт/см 2 - 10 15 Вт/см 2), временной диапазон - 16 порядков, от непрерывного излучения (~10 с) до фемтосекундных импульсов (10 −15 с). Процессы взаимодействия лазерного излучения с тканями определяются пространственным распределением объемной плотности энергии и зависят от интенсивности и длины волны падающего излучения, а также от оптических свойств ткани.

На первых стадиях развития лазерной медицины биоткань представлялась как вода с «примесями», поскольку человек на 70–80% состоит из воды и полагалось, что механизм воздействия лазерного излучения на биоткани определяется ее поглощением. При применении непрерывных лазеров такая концепция была более или менее работоспособна. Если необходимо организовать воздействие на поверхность биоткани, следует выбрать длину волны излучения, сильно поглощаемого водой. Если требуется объемный эффект, наоборот, излучение должно слабо ею поглощаться. Однако, как выяснилось в дальнейшем, другие компоненты биоткани тоже способны поглощать (в частности, в видимой области спектра - составляющие крови, рис. 2). Пришло понимание, что биоткань - это не вода с примесями, а гораздо более сложный объект.

В то же время начали применяться импульсные лазеры. Воздействие на биоткани при этом определяется комбинацией длины волны, плотности энергии и длительности импульса излучения. Последний фактор, например, помогает разделить термическое и нетермическое воздействие.

В практику вошли импульсные лазеры с большим диапазоном изменения длительности импульса - от милли- до фемтосекунд. Здесь вступают в игру различного рода нелинейные процессы: оптический пробой на поверхности мишени, многофотонное поглощение, образование и развитие плазмы, генерация и распространение ударных волн. Стало очевидным, что невозможно создать единый алгоритм поиска нужного лазера и в каждом конкретном случае требуется свой подход. С одной стороны, это крайне осложнило задачу, с другой - открыло совершенно фантастические возможности варьировать способы воздействия на биологическую ткань.

При взаимодействии излучения с биотканями большое значение имеет рассеяние. На рис. 3 приведены два конкретных примера распределения интенсивности излучения в тканях предстательной железы собаки при падении на ее поверхность лазерного излучения с разными длинами волн: 2,09 и 1,064 мкм. В первом случае поглощение превалирует над рассеянием, во втором ситуация обратная (табл. 1).

В случае сильного поглощения проникновение излучения подчиняется закону Бугера - Ламберта - Бэра, т. е. имеет место экспоненциальное затухание. В видимом и ближнем ИК-диапазонах длин волн типичные значения коэффициентов рассеяния большинства биологических тканей лежат в пределах 100–500 см −1 и монотонно уменьшаются с увеличением длины волны излучения. За исключением УФ- и дальней ИК-области коэффициенты рассеяния биоткани на один-два порядка величины больше коэффициента поглощения. В условиях доминирования рассеяния над поглощением достоверную картину распространения излучения можно получить, используя модель диффузного приближения, имеющую, правда, вполне четкие рамки применимости, которые не всегда принимаются во внимание.

Таблица 1. Параметры лазерного излучения и оптические характеристики ткани предстательной железы собаки

Итак, при применении того или иного лазера для конкретных операций следует учитывать целый ряд нелинейных процессов и соотношение рассеяния и поглощения. Знание поглощающих и рассеивающих свойств выбранной ткани необходимо для расчета распределения излучения внутри биологической среды, определения оптимальной дозировки, планирования результатов воздействия.

Механизмы взаимодействия

Рассмотрим основные типы взаимодействия лазерного излучения с биологическими тканями, реализуемые при использовании лазеров в клинической практике.

Фотохимический механизм взаимодействия играет основную роль при фотодинамической терапии, когда в организм вводятся выбранные хромофоры (фотосенсибилизаторы). Монохроматическое излучение инициирует селективные фотохимические реакции с их участием, запускающие биологические преобразования в тканях. После резонансного возбуждения лазерным излучением молекула фотосенсибилизатора испытывает несколько синхронных или последовательных распадов, которые вызывают внутримолекулярные реакции переноса. В результате цепочки реакций высвобождается цитотоксический реагент, необратимым образом окисляющий основные клеточные структуры. Воздействие происходит при невысоких плотностях мощности излучения (~1 Вт/см 2) и длительных временах (от секунд до непрерывного облучения). В большинстве случаев используется лазерное излучение видимого диапазона длин волн, имеющее большую глубину проникновения, что важно, когда требуется влиять на глубоколежащие тканевые структуры.

Если фотохимические процессы происходят за счет протекания цепочки специфических химических реакций, то термические эффекты при воздействии лазерного излучения на ткани, как правило, не специфичны. На микроскопическом уровне идут объемное поглощение излучения за счет переходов в молекулярных колебательно-вращательных зонах и последующее безызлучательное затухание. Температура ткани повышается очень эффективно, поскольку поглощению фотонов способствуют огромное количество доступных колебательных уровней большинства биомолекул и многочисленность возможных каналов релаксации при столкновениях. Типичные значения энергии фотонов равны: 0,35 эВ - для Er:YAG-лазеров ; 1,2 эВ - для Nd:YAG-лазеров; 6,4 эВ - для ArF-лазеров и значительно превышают кинетическую энергию молекулы, которая при комнатной температуре составляет лишь 0,025 эВ.

Термические эффекты в ткани играют доминирующую роль при использовании лазеров с непрерывным режимом генерации и импульсных лазеров, с длительностями импульса в несколько сот микросекунд и более (лазеры в режиме свободной генерации). Удаление ткани начинается после нагрева ее приповерхностного слоя до температуры выше 100°С и сопровождается повышением давления в мишени. Гистология на этом этапе показывает наличие разрывов и образование вакуолей (полостей) внутри объема. Продолжающееся облучение приводит к росту температуры до значений 350–450°С, происходит выгорание и карбонизация биоматериала. Тонкий слой карбонизированной ткани (≈20 мкм) и слой вакуолей (≈30 мкм) поддерживают высокий градиент давления вдоль фронта удаления ткани, скорость которого постоянна во времени и зависит от типа ткани.

При импульсном лазерном воздействии на развитие фазовых процессов влияет наличие внеклеточного матрикса (ВКМ). Кипение воды внутри объема ткани происходит, когда разница химических потенциалов пара и жидкой фазы, необходимая для роста пузырей, превышает не только поверхностное натяжение на границе раздела фаз, но и энергию эластичного растяжения ВКМ, необходимую для деформации матрицы окружающей ткани. Рост пузыря в ткани требует большего внутреннего давления, чем в чистой жидкости; повышение давление приводит к увеличению температуры кипения. Давление растет до тех пор, пока не превысит предел прочности ВКМ ткани при растяжении и не приведет к удалению и выбросу ткани. Термическое повреждение ткани может меняться от карбонизации и плавления на поверхности до гипертермии на глубину в несколько миллиметров в зависимости от плотности мощности и времени воздействия падающего излучения.

Пространственно ограниченный хирургический эффект (селективный фототермолиз) осуществляется при длительности импульса, меньшей характерного времени тепловой диффузии нагреваемого объема, - тогда тепло удерживается в области воздействия (не перемещается даже на расстояние, равное оптической глубине проникновения), и термическое повреждение окружающих тканей мало. Воздействие излучения непрерывных лазеров и лазеров с длинными импульсами (длительностью ≥100 мкс) сопровождается большей зоной термического поражения близлежащих к области воздействия тканей.

Сокращение длительности импульса меняет картину и динамику термических процессов при взаимодействии лазерного излучения с биотканями. При ускорении подвода энергии в биоматериал ее пространственное распределение сопровождается значительными термическими и механическими переходными процессами. Поглощая энергию фотонов и нагреваясь, материал расширяется, стремясь перейти в состояние равновесия в соответствии с его термодинамическими свойствами и с внешними условиями среды. Результирующая неоднородность распределения температуры порождает термоупругие деформации и распространяющуюся в материале волну сжатия.

Однако расширение или установление механического равновесия в ответ на нагрев ткани занимает характерное время, равное по порядку величины времени, необходимому продольной акустической волне для прохождения по системе. Когда длительность лазерного импульса его превышает, материал расширяется в течение действия импульса, и значение индуцированного давления меняется вместе с интенсивностью лазерного излучения. В обратном случае энерговклад в систему происходит быстрее, чем та успевает механически на него реагировать, и скорость расширения определяется инерцией нагретого слоя ткани независимо от интенсивности излучения, а давление меняется вместе со значением объемной энергии, поглощенной в ткани. Если взять совсем короткий импульс (с длительностью, много меньшей времени пробега акустической волны по области тепловыделения), ткань будет «инерциально удерживаться», т. е. не получит времени на расширение, и нагрев произойдет при постоянном объеме.

Когда скорость выделения энергии в объеме ткани при поглощении лазерного излучения намного выше скорости убыли энергии на испарение и нормальное кипение, вода, находящаяся в ткани, переходит в перегретое метастабильное состояние. При подходе к спинодали вступает в действие флуктуационный механизм возникновения зародышей (гомогенная нуклеация), что обеспечивает быстрый распад метастабильной фазы. Наиболее ярко процесс гомогенной нуклеации проявляется при импульсном нагреве жидкой фазы, что выражается во взрывном вскипании перегретой жидкости (фазовый взрыв).

Лазерное излучение способно и напрямую разрушать биоматериал. Энергия диссоциации химических связей органических молекул меньше энергии фотонов лазерного излучения УФ-диапазона (4,0–6,4 эВ) или сравнима с ней. При облучении ткани такие фотоны, поглощаясь сложными органическими молекулами, могут вызывать прямой разрыв химических связей, осуществляя «фотохимический распад» материала. Механизм взаимодействия в диапазоне длительностей лазерного импульса 10 пс - 10 нс может быть классифицирован как электромеханический, что подразумевает генерацию плазмы в интенсивном электрическом поле (оптический пробой) и удаление тканей за счет распространения ударных волн, кавитации и формирования струй.

Образование плазмы на поверхности ткани характерно для коротких длительностей импульса при интенсивностях излучения порядка 10 10 –10 12 Вт/см 2 , соответствующих напряженности локального электрического поля ~10 6 –10 7 В/см. В материалах, испытывающих повышение температуры благодаря высокому значению коэффициента поглощения, плазма может возникать и поддерживаться за счет термоэмиссии свободных электронов. В средах с малым поглощением она образуется при больших интенсивностях излучения за счет освобождения электронов при многофотонном поглощении излучения и лавинообразной ионизации молекул ткани (оптический пробой). Оптический пробой позволяет «закачивать» энергию не только в хорошо поглощающие пигментированные, но и в прозрачные, слабо поглощающие ткани.

Удаление тканей при воздействии импульсным лазерным излучением требует деструкции ВКМ и не может рассматриваться просто как процесс дегидратации при нагреве. К разрушениям ВКМ ткани приводят давления, генерируемые при фазовом взрыве и ограниченном кипении. В результате наблюдается взрывной выброс материала без полного испарения. Энергетический порог такого процесса оказывается ниже удельной энтальпии парообразования воды. Ткани, имеющие высокую прочность на разрыв, требуют более высоких температур для разрушения ВКМ (пороговая объемная плотность энергии должна быть сравнима с энтальпией парообразования).

Инструменты на выбор

Один из самых распространенных хирургических лазеров - Nd:YAG-лазер, используемый при вмешательствах с эндоскопическим доступом в пульмонологии, гастроэнтерологии, урологии, в эстетической косметологии при удалении волос, при интерстициальной лазерной коагуляции опухолей в онкологии. В режиме модулированной добротности, с длительностями импульса от 10 нс, он применяется в офтальмологии, например при лечении глаукомы.

Большинство тканей на его длине волны (1064 нм) имеют низкий коэффициент поглощения. Эффективная глубина проникновения такого излучения в ткани может составлять несколько миллиметров и обеспечивает хорошие гемостаз и коагуляцию. Однако объем удаленного материала относительно невелик, а рассечение и абляция тканей может сопровождаться термическим повреждением близлежащих областей, отеками и воспалительными процессами.

Важное преимущество Nd:YAG-лазера - возможность доставки излучения в зону воздействия волоконно-оптическими световодами. Использование эндоскопического и волоконного инструмента позволяют проводить лазерное излучение в нижний и верхний отделы желудочно-кишечного тракта практически неинвазивным способом. Увеличение длительности импульса этого лазера в режиме модулированной добротности до 200–800 нс позволило использовать тонкие оптические волокна с диаметром сердцевины 200–400 мкм для фрагментации камней. К сожалению, поглощение в оптическом волокне не позволяет доставлять лазерное излучение с длинами волн, более эффективными для абляции тканей, такими как 2,79 мкм (Er:YSGG ) и 2,94 мкм (Er:YAG). Для транспортировки излучения с длиной волны 2,94 мкм в Институте общей физики (ИОФ) им. А. М. Прохорова РАН была разработана оригинальная технология роста кристаллических волокон, с помощью которой было изготовлено уникальное кристаллическое волокно из лейкосапфира, прошедшее успешные испытания. Транспортировка излучения по коммерчески доступным световодам возможна для излучения с меньшими длинами волн: 2,01 мкм (Cr:Tm:YAG) и 2,12 мкм (Cr:Tm:Ho:YAG) . Глубина проникновения излучения этих длин волн достаточно мала для эффективной абляции и минимизации сопутствующих термических эффектов (она составляет ~170 мкм для тулиевого лазера и ~350 мкм для гольмиевого).

Дерматология взяла на вооружение лазеры как видимого (рубиновые, александритовые, лазеры с генерацией второй гармоники нелинейными кристаллами титанил-фосфата калия, KTP), так и инфракрасного диапазона длин волн (Nd:YAG). Селективный фототермолиз - основной эффект, используемый при лазерном воздействии на ткани кожи; показания для лечения - различные сосудистые поражения кожи, доброкачественные и злокачественные опухоли, пигментация, удаление татуировок и косметические вмешательства.

Лазеры на ErCr:YSGG (2780 нм) и Er:YAG (2940 нм) применяются в стоматологии для воздействия на твердые ткани зубов при лечении кариеса и подготовке полости зуба; при манипуляциях отсутствуют термические эффекты, повреждения структуры зуба и дискомфорт у пациента. KTP-, Nd:YAG-, ErCr:YSGG- и Er:YAG-лазеры задействованы в хирургии на мягких тканях ротовой полости.

Исторически первая область медицины, которая освоила новый инструмент, - офтальмология. Работы, связанные с привариванием сетчатки лазером, начались еще в конце 1960-х. Понятие «лазерная офтальмология» стало общеупотребительным, современную клинику этого профиля невозможно представить без применения лазеров. Приваривание сетчатки световым излучением обсуждалось многие годы, однако лишь с появлением лазерных источников фотокоагуляция сетчатки вошло в широкую повседневную клиническую практику.

В конце 70-х - начале 80-х годов прошлого столетия развернулись работы с лазерами на основе импульсного Nd:YAG-лазера для разрушения капсулы хрусталика в случае вторичной катаракты. Сегодня капсулотомия, выполняемая с помощью неодимового лазера с модулированной добротностью, - стандартная хирургическая манипуляция при лечении этого заболевания. Революцию в офтальмологии совершило открытие возможности изменять с помощью коротковолнового УФ-излучения кривизну роговицы и таким образом корректировать остроту зрения. Лазерные операции по коррекции зрения теперь широко распространены и выполняются во многих клиниках. Существенный прогресс в рефракционной хирургии и в ряде других малоинвазивных микрохирургических вмешательств (при пересадке роговицы, создании внутристромальных каналов, лечении кератоконуса и др.) был достигнут при внедрении лазеров с короткой и сверхкороткой длительностью импульсов.

В настоящее время в офтальмологической практике наиболее популярны твердотельные Nd:YAG- и Nd:YLF -лазеры (непрерывные, импульсные с модуляцией добротности с длительностью импульсов порядка нескольких наносекунд и фемтосекундные), в меньшей степени - Nd:YAG-лазеры с длиной волны 1440 нм в режиме свободной генерации, Ho- и Er-лазеры.

Поскольку различные участки глаза имеют разный состав и разный коэффициент поглощения для одной и той же длины волны, выбор последней определяет как отрезок глаза, на котором будет происходить взаимодействие, так и локальный эффект в зоне фокусировки. Исходя из спектральных характеристик пропускания глаза, для хирургического воздействия на внешние слои роговицы и переднего отрезка целесообразно использовать лазеры с длиной волны в диапазоне 180–315 нм. Более глубокое проникновение, вплоть до хрусталика, возможно осуществить в спектральном диапазоне 315–400 нм, а для всех дальних областей подходит излучение с длиной волны более 400 нм и вплоть до 1400 нм, когда начинается существенное поглощение воды.

Физика - медицине

На основе учета свойств биологических тканей и типа реализуемого взаимодействия при падении излучения Институт общей физики разрабатывает лазерные системы для применения в различных областях хирургии, сотрудничая со многими организациями. В число последних входят академические институты (Институт проблем лазерных и информационных технологий - ИПЛИТ, Институт спектроскопии, Институт аналитического приборостроения), Московский государственный университет им. М. В. Ломоносова, ведущие медицинские центры страны (МНТК «Микрохирургия глаза» им. С. Н. Федорова, Московский научно-исследовательский онкологический институт им. П. А. Герцена Росздрава, Российская медицинская академия последипломного образования, Научный центр сердечно-сосудистой хирургии им. А. Н. Бакулева РАМН, ЦКБ № 1 ОАО РЖД), а также ряд коммерческих компаний («Оптосистемы», «Визионика», «Новые энергетические технологии», «Лазерные технологии в медицине», «Кластер», НТЦ «Волоконные оптические системы»).

Так, в нашем институте создан лазерный хирургический комплекс «Лазурит», который может выступать в качестве как скальпеля-коагулятора, так и литотриптора, т. е. прибора для разрушения камней в органах человека. Причем литотриптор работает на новом оригинальном принципе - используется излучение с двумя длинами волн. Это лазер на базе кристалла Nd:YAlO 3 (с основной длиной волны излучения 1079,6 нм и его второй гармоникой в зеленой области спектра). Установка снабжена блоком обработки видеоинформации и позволяет следить за операцией в режиме реального времени.

Двухволновое лазерное воздействие микросекундной длительности обеспечивает фотоакустический механизм фрагментации камней, который основан на открытом А. М. Прохоровым с сотрудниками оптико-акустическом эффекте - генерации ударных волн при взаимодействии лазерного излучения с жидкостью. Воздействие оказывается нелинейным [ , ] (рис. 4) и включает в себя несколько стадий: оптический пробой на поверхности камня, образование плазменной искры, развитие кавитационного пузыря и распространение ударной волны при его коллапсе.

В итоге через ~700 мкс с момента падения лазерного излучения на поверхность камня происходит разрушение последнего благодаря воздействию ударной волны, генерируемой при коллапсе кавитационного пузыря. Преимущества такого метода литотрипсии очевидны: во-первых, обеспечивается безопасность воздействия на окружающие камень мягкие ткани, так как ударная волна в них не поглощается и, следовательно, не наносит им вреда, присущего другим лазерным методам литотрипсии; во-вторых, достигается высокая эффективность при фрагментации камней любой локализации и химического состава (табл. 2); в-третьих, гарантируется высокая скорость фрагментации (см. табл. 2: продолжительность разрушения камней варьируется в диапазоне 10–70 с в зависимости от их химического состава); в-четвертых, при доставке излучения не повреждается волоконный инструмент (за счет оптимально выбранной длительности импульса); наконец, радикально снижается число осложнений и сокращается послеоперационный период лечения.

Таблица 2. Химический состав камней и параметры лазерного излучения при фрагментации в экспериментах in vitro

Комплекс «Лазурит» (рис. 5) включает в себя также скальпель-коагулятор, который позволяет, в частности, успешно проводить уникальные операции на кровенаполненных органах, таких как почка, удалять опухоли с минимальной кровопотерей, без пережатия почечных сосудов и без создания искусственной ишемии органа, сопутствующей принятым сейчас способам хирургического вмешательства. Резекция проводится при лапароскопическом доступе. При эффективной глубине проникновения импульсного одномикронного излучения ~1 мм одновременно осуществляются резекция опухоли, коагуляция и гемостаз, а также достигается абластичность раны. Разработана новая медицинская технология лапароскопической резекции почки при раке Т 1 N 0 M 0 .

Результатами исследовательских работ в области офтальмалогии стали разработки офтальмологических лазерных систем «Микроскан» и ее модификации «Микроскан Визум» для рефракционной хирургии на основе ArF-эксимерного лазера (193 нм). С помощью этих установок осуществляется коррекция близорукости, дальнозоркости и астигматизма. Реализован так называемый метод «летающего пятна»: роговица глаза засвечивается пятном излучения диаметром порядка 0,7 мм, которое сканирует ее поверхность по алгоритму, заданному компьютером, и изменяет ее форму. Коррекция зрения на одну диоптрию при частоте повторения импульсов 300 Гц обеспечивается за 5 с. Воздействие остается поверхностным, так как излучение с этой длиной волны сильно поглощается роговицей глаза. Система слежения за глазом позволяет обеспечить высокое качество операции независимо от подвижности глаза пациента. Установка «Микроскан» сертифицирована в России, странах СНГ, Европе и Китае, ею оснащены 45 российских клиник. Офтальмологические эксимерные системы для рефракционной хирургии, разработанные в нашем институте, в настоящее время занимают 55% отечественного рынка.

При поддержке Федерального агентства по науке и инновациям при участии ИОФ РАН, ИПЛИТ РАН и МГУ создан офтальмологический комплекс, включающий в себя «Микроскан Визум», диагностическую аппаратуру, состоящую из аберрометра и сканирующего офтальмоскопа, а также уникальную фемтосекундную лазерную офтальмологическую систему «Фемто Визум». Рождение этого комплекса стало примером плодотворного сотрудничества академических организаций с Московским государственным университетом в рамках единой программы: в ИОФ был разработан хирургический инструмент, а в МГУ и ИПЛИТе - диагностическая аппаратура, что позволяет проводить целый ряд уникальных офтальмологических операций. На принципе работы фемтосекундной офтальмологической установки следует остановиться подробнее. За ее основу был выбран неодимовый лазер с длиной волны излучения 1064 нм. Если в случае применения эксимерного лазера роговица сильно поглощает, то при длине волны ~1 мкм линейное поглощение слабое. Однако за счет малой длительности импульса (400 фс) при фокусировке излучения удается достичь высокой плотности мощности, и, следовательно, становятся эффективными многофотонные процессы. При организации соответствующей фокусировки оказывается возможным так воздействовать на роговицу, что ее поверхность никак не затрагивается, а многофотонное поглощение осуществляется в объеме. В качестве механизма воздействия выступает фотодеструкция тканей роговицы при многофотонном поглощении (рис. 6), когда отсутствует термическое повреждение близлежащих слоев ткани и возможно осуществление вмешательства с прецизионной точностью. Если для излучения эксимерного лазера энергия фотона (6,4 эВ) сравнима с энергией диссоциации, то в случае одномикронного излучения (1,2 эВ) она по крайней мере вдвое, а то и в семь раз меньше, что и обеспечивает описанный эффект и открывает новые возможности в лазерной офтальмологии.

Интенсивно развиваются сегодня фотодинамическая диагностика и терапия рака на основе использования лазера, монохроматическое излучение которого возбуждает флуоресценцию красителя-фотосенсибилизатора и инициирует селективные фотохимические реакции, вызывающие биологические преобразования в тканях. Дозы введения красителя составляют 0,2–2 мг/кг. При этом фотосенсибилизатор преимущественно накапливается в опухоли, и его флуоресценция позволяет установить локализацию опухоли. За счет эффекта переноса энергии и увеличения мощности лазера происходит образование синглетного кислорода, являющегося сильным окислителем, что приводит к разрушению опухоли. Таким образом, по описанной методике осуществляется не только диагностика, но и лечение онкологических заболеваний. Следует заметить, что введение фотосенсибилизатора в организм человека - не вполне безобидная процедура и поэтому в ряде случаев лучше применять так называемую лазероиндуцированную аутофлуоресценцию. Оказалось, в некоторых случаях, в особенности с использованием коротковолнового лазерного излучения, здоровые клетки не флуоресцируют, тогда как раковые клетки обнаруживают эффект флуоресценции. Эта методика предпочтительнее, однако она пока служит в основном диагностическим целям (хотя в последнее время предпринимаются шаги и для реализации терапевтического эффекта). В нашем институте разработаны серии приборов как для флуоресцентной диагностики, так и для фотодинамической терапии. Это оборудование сертифицировано и выпускается серийно, им оснащены 15 московских клиник.

Для эндоскопических и лапароскопических операций необходимый компонент лазерной установки составляют средства доставки излучения и формирования его поля в области взаимодействия. У нас сконструированы такие устройства на основе многомодовых оптических волокон, позволяющие работать в спектральной области от 0,2 до 16 мкм.

При поддержке Федерального агентства по науке и инновациям в ИОФ развивается методика поиска распределения наночастиц по размерам в жидкости (и в частности, в крови человека) с помощью спектроскопии квазиупругого рассеяния света. Было обнаружено, что присутствие в жидкости наночастиц приводит к уширению центрального пика рэлеевского рассеяния, и измерение величины этого уширения позволяет определять размеры наночастиц. Исследование спектров размеров наночастиц в сыворотке крови пациентов с сердечно-сосудистыми нарушениями показали присутствие белково-липидных кластеров больших размеров (рис. 7). Было также установлено, что частицы больших размеров характерны и для крови онкологических больных. Более того, при положительном результате лечения пик, ответственный за частицы больших размеров, исчезал, но в случае рецидива снова появлялся. Таким образом, предлагаемая методика весьма полезна для диагностики как онкологических, так и сердечно-сосудистых заболеваний.

Ранее в институте был разработан новый метод обнаружения предельно низких концентраций органических соединений. Основными составляющими прибора служили лазер, времяпролетный масс-спектрометр и наноструктурированная пластина, на которой адсорбировался исследуемый газ. Сегодня эта установка модифицируется для анализа крови, что также откроет новые возможности для ранней диагностики многих заболеваний.

Решение целого ряда медицинских проблем возможно только при объединении усилий в нескольких областях: это и фундаментальные исследования по лазерной физике, и детальное изучение взаимодействия излучения с веществом, и анализ процессов переноса энергии, и медико-биологические изыскания, и разработка медицинских технологий лечения.

4 YSGG - Yttrium Scandium Gallium Garnet (иттрий-скандий-галлиевый гранат).

YLF - Yttrium Lithium Fluoride (фторид иттрия-лития).

Перед вами Король Подтяжки, его Величество Скальпель. Есть ли реальные конкуренты на его «трон»? Давайте разберемся! Годы берут своё, и стареющая кожа неминуемо обвисает под действием силы гравитации. И все мы безропотно, как овечки, готовы в один прекрасный (или скорее ужасный?) день «лечь под скальпель хирурга». Очевидно, что обвисшая кожа – главная проблема, с которой пытается справиться современная косметология. Морщины, наверное, сами по себе не так страшны. Иногда они даже довольно мило выглядят. Напротив, обвисшая кожа не нравится никому и является самым неприятным признаком преждевременного старения. Как вы возможно слышали, внутренний «каркас», который удерживает от провисания кожу – это мышечно-апоневротический слой (SMAS). Он располагается на границе мышц и кожи – то есть довольно глубоко. До последнего времени справедливо считалось, что добраться до него только хирург – причем добраться в физическом смысле, натянув и обрезав излишки ткани. Да, хирургическая подтяжка дает быстрый и радикальный эффект. Но кожа сама по себе при этом не становится моложе – её качество остается прежним. И черты лица могут измениться очень сильно - иногда до неузнаваемости. Эти, а также многие другие причины (в числе которых высокая стоимость процедуры, высокие риски и т.д.) заставляли искать альтернативу скальпелю. Какие успехи достигнуты в данном направлении? Химические и лазерные пилинги мы даже не рассматриваем – они выравнивают лишь мелкие морщинки, действуя не глубже эпидермиса. Золотые нити, как и прочие перманентные импланты давно выбыли из борьбы – слишком много с ними было проблем… Но не будем о грустном, кто следующий? Инъекции: за счет введения филлера объем ткани перераспределяется, поскольку мы создаем натяжение в другом месте. При небольшом провисании и очень профессиональном подходе эффект будет хорошим. Но это, скорее, маскировка проблемы, а не её решение. Нитевой лифтинг – наш первый реальный претендент. На нём остановимся подробнее. Вопреки расхожему мнению, он предназначен для удерживания тканей не за счет собственно нитей, так как современные нити вскоре после введения рассасываются. Поддерживающий эффект даёт фиброзная (рубцовая) ткань, которая образуется в процессе введения нитей, как результат травмирования тканей. Конечно же, рубцы эти незаметны – они спрятаны в глубине кожи. Тем не менее, нельзя сказать, что это совершенно безобидно. Техника введения нитей довольно сложна, и лишь немногие специалисты ей владеют в достаточной мере. В этом смысле она близка к пластической хирургии. Следующий на очереди - фракционный лазер. Выжигая на поверхности кожи точку за точкой, он предназначен для выравнивания кожи. Но несмотря на то, что в рекламе клиник и салонов красоты можно встретить различные «сладкие» обещания, ни один из производителей таких лазеров не говорит о реальном лифтинговом эффекте. И это правильно, ведь фракционные лазеры не могут добраться до SMAS и их действие ограничено максимум 1-1,5 миллиметрами в глубину. За счет высокой температуры внутри каждой такой “точки” происходит термический ожог и образуется микро-рубец. При большом количестве таких микро-рубцов кожа немного натягивается (рубцовая ткань более плотная), но чаще всего этот эффект не настолько выражен, чтобы говорить о полноценом лифтинге. Из недостатков – необходимость анестезии (процедура очень болезненна), риск послеожоговой гиперпигментации, а также ограничение по количеству процедур – ведь с каждым разом рубцов будет все больше и больше… Некоторые из фракционных лазеров жгут настолько крупные точки, что их видно сразу, и что называется, невооруженным глазом. Такую кожу впоследствии не сможет натянуть даже пластический хирург, поскольку она становится совершенно неэластичной. Сфокусированный ультразвук стал первой серьезной заявкой на победу, когда компании Ulthera удалось доказать лифтинг опущенных бровей после процедуры. Метод заключается в том, что ультразвук фокусируется на уровне SMAS, разогревая его вплоть до коагуляции. Да-да, речь идет опять о термическом ожоге. Но разница с фракционными лазерами в том, что поверхностные слои кожи не перегреваются. Метод можно отнести к фракционным, поскольку перегревается не весь SMAS, а создаются сотни «горячих точек». Внутри этих точек перегрев приводит к рубцеванию, что сокращает объем ткани. Да, процедура очень болезненна. Да и рубцы – это не очень хорошо, ведь фиброзная ткань лишена нормального питания и кровоснабжения, что ухудшает с временем качество кожи. Ряд пациентов в качестве побочного эффекта отмечает сокращение подкожно-жирового слоя, от чего черты лица становятся по старчески острыми… И наконец, последняя разработка ученых - технология RecoSMA. Она относится к лазерным, но при этом нетермическая (кожа во время процедуры остается 36,6 С). При этом воздействие идет на глубину до 6 мм, что не под силу ни одному из других лазеров. Кожа не повреждается, сохраняя свои защитные свойства. Всего через несколько дней после процедуры Вы можете спокойно загорать, не опасаясь получить пигментацию. И главное – здесь подтяжка кожи достигается не за счет рубцевания, как в других случаях. Кожа реально обновляется, становясь по всем параметрам моложе. Исследование, недавно проведенное в государственном французском госпитале Henri Mondor, убедительно доказало возможности новой технологии (об этом читайте здесь) Итак, сегодня у Вас есть выбор - «натянуть и отрезать лишнее» или «реально омолодить». РекоСМА или пластическая хирургия? Сравните, и сделайте свой выбор! RecoSMA дает не такой быстрый и такой радикальный результат, как пластическая операция. Лазерное омоложение дает «толчок» организму, и он сам начинает вырабатывать коллаген и менять структуру кожи. Эффект проявляется примерно через месяц и затем нарастает в течение полугода. Но преимуществ у этой процедуры значительно больше. 1. РекоСМА – это подтяжка естественным путем. Не требуется хирургического вмешательства. Организм все делает сам. 2. РекоСМА – это подтяжка без рисков. Вы не рискуете изменить внешность до неузнаваемости или получить не тот результат, который хотели. 3. РекоСМА – это безопасная подтяжка. На коже не остается рубцов и других следов, которые может оставить скальпель хирурга. 4. РекоСМА переносится комфортно. Не требуется даже местной анестезии. Во время процедуры вы чувствуете только теплое покалывание. 5. РекоСМА не требует реабилитации. Легкое покраснение проходит на следующий день, затем кожа начинает активно отшелушиваться. Никакой специальный уход не требуется, и уже через 4-5 дней можно возвращаться к привычному образу жизни. 6. Помимо эффекта подтяжки, РекоСМА реально омолаживает кожу. Она удаляет дефекты кожи, такие как рубцы, постакне и т.д. Расширенные поры сужаются, что препятствует их закупориванию и образованию черных точек в дальнейшем. Одна процедура RecoSMA в год – и Вам, возможно, никогда не понадобится «ложиться под нож». Многие наши клиенты отмечают, что с РекоСМА они как будто бы остановили время. Выбирайте лучшее для красоты и здоровья! Фото до и после процедуры:

До

После