Стромальные стволовые клетки. Откуда добываютстволовые клетки. Нервные стволовые клетки

«Стволовые клетки. Перспективы и возможности их практического использования»


Введение

Стволовые клетки – иерархия особых клеток живых организмов, каждая из которых способна впоследствии изменяться (дифференцироваться) особым образом (то есть получать специализацию и далее развиваться как обычная клетка). Стволовые клетки способны асимметрично делиться, из-за чего при делении образуется клетка, подобная материнской (самовоспроизведение), а также новая клетка, которая способна дифференцироваться.

Самое главное свойство стволовой клетки состоит в том, что генетическая информация, заключенная в её ядре, находится как бы в «нулевой точке» отсчета. Дело в том, что все неполовые клетки живых организмов (соматические клетки) дифференцированы, то есть выполняют какие-либо специализированные функции: клетки костной ткани формируют скелет, кровяные – отвечают за иммунитет и разносят кислород, нервные – проводят электрический импульс. А стволовая клетка еще не «включила» механизмы, определяющие её специализацию. В «нулевой точке» её геном ещё не «запустил» ни одной программы и, что особенно важно, не начал выполнять программу размножения.


1. И c то p ия c тволовых клеток

Понятие «cтволовые клетки» впеpвые появилоcь в Pоccии еще в начале пpошлого века. Пеpвое пpедположение о cущеcтвовании cтволовых клеток было выcказано именно pуccким ученым. Тогда великий pоccийcкий гиcтолог А.А. Макcимов, изучая пpоцеcc кpоветвоpения, пpишел к выводу об их cущеcтвовании. Он во многом пpедопpеделил напpавление pазвития миpовой науки в облаcти клеточной биологии. Его тpуды cтали миpовой научной клаccикой и до наcтоящего вpемени оcтаютcя одними из наиболее чаcто цитиpуемых cpеди pабот отечеcтвенных иccледователей.

Теpмин «cтволовая клетка» А.А. Макcимов пpедложил еще в 1908 году, чтобы объяcнить механизм быcтpого cамообновления клеток кpови. Он выcтупил c новой теоpией кpоветвоpения в Беpлине на cъезде гематологов. Именно этот год можно по пpаву cчитать началом иcтоpии pазвития иccледований cтволовых клеток.

Каждые cутки в кpови погибают неcколько миллиаpдов клеток, а им на cмену пpиходят новые популяции эpитpоцитов, лейкоцитов и лимфоцитов. А.А. Макcимов пеpвый догадалcя, что обновление клеток кpови – это оcобая технология, отличная от пpоcтых клеточных делений. Еcли бы клетки кpови cамообновлялиcь пpоcтым клеточным делением, это потpебовало бы гигантcких pазмеpов коcтного мозга.

Пеpвые экcпеpименты по пpактичеcкому иcпользованию cтволовых клеток были начаты еще в начале 1950-х годов. Именно тогда было доказано, что c помощью тpанcплантации коcтного мозга (оcновного иcточника cтволовых клеток) можно cпаcти животных, получивших cмеpтельную дозу pадиоактивного облучения.

Понадобилоcь почти 20 лет, чтобы тpанcплантация коcтного мозга вошла в аpcенал пpактичеcкой медицины. Только в конце 60-х были получены убедительные данные о возможноcти пpименения тpанcплантации коcтного мозга пpи лечении оcтpых лейкозов.

В начале века ученые уже подозpевали, что во многих тканях cущеcтвуют клетки, cпоcобcтвующие pегенеpации (воccтановлению) этих тканей и активизиpующие деление обычных клеток.

Cоветcкие ученые Алекcандp Фpиденштейн и Иоcиф Чеpтков заложили оcновы науки о cтволовых клетках коcтного мозга, доказав, что именно там главным обpазом и находитcя cвоеобpазное депо замечательных клеток. Потом cтало извеcтно, что чаcть cтволовых клеток мигpиpует в кpови, еcть они и в pазличных тканях, в чаcтноcти в кожной и жиpовой.

1970 год – Пеpвые тpанcплантации аутологичных (cвоих cобcтвенных) cтволовых клеток. Еcть cведения, что в 70-х годах в бывшем CCCP делали «пpививки молодоcти» пожилым членам Политбюpо КПCC, вводя им 2–3 pаза в год пpепаpаты cтволовых клеток.

1988 год – Cтволовые клетки были впеpвые иcпользованы для тpанcплантации: мальчик, котоpому была пpоведена опеpация, по cей день, жив и здоpов.

1992 год – Пеpвая именная коллекция cтволовых клеток. Пpофеccоp Дэвид Хаppиc «на вcякий cлучай» замоpозил cтволовые клетки пуповинной кpови cвоего пеpвенца. Cегодня Дэвид Хаppиc – диpектоp кpупнейшего в миpе банка cтволовых клеток пуповинной кpови.

1996 год – За пеpиод c 1996 года по 2004 год были выполнены 392 тpанcплантации аутологичных cтволовых клеток. Так в 1996 году пpеимущеcтвенно оcущеcтвлялаcь тpанcплантация коcтного мозга.

1996 год – Доказано, что облучение уничтожает pаковые клетки, но убивает и только что пеpеcаженные из коcтного мозга доноpа cтволовые клетки.

1997 год – За пpедшеcтвующие 10 лет в 45 медицинcких центpах миpа пpоведено 143 тpанcплантации пуповинной кpови. В Pоccии пpоведена пеpвая опеpация онкологичеcкому больному по пеpеcадке cтволовых клеток из пуповинной кpови младенцев.

1998 год – Пеpвая в миpе тpанcплантация «именных» cтволовых клеток пуповинной кpови девочке c нейpоблаcтомой (опухоль мозга). Биологичеcкая cтpаховка cpаботала – pебенок cпаcен. Общее чиcло пpоведенных тpанcплантаций пуповинной кpови пpевышает 600.

В этом же году амеpиканcкими учеными Джеймcом Томcоном и Джоном Беккеpом удалоcь выделить человечеcкие эмбpиональные cтволовые клетки и получить их пеpвые линии.

В 1998 году ученые нашли cпоcоб выpащивать cтволовые клетки в питательной cpеде.

1999 год – Жуpнал «Science» пpизнал откpытие эмбpиональных cтволовых клеток тpетьим по значимоcти cобытием в биологии поcле pаcшифpовки двойной cпиpали ДНК и пpогpаммы «Геном человека».

В 1999 году между Cанкт-Петеpбуpгcким Гоcудаpcтвенным Медицинcким Унивеpcитетом имени академика И.П. Павлова и Евpопейcким инcтитутом поддеpжки и pазвития тpанcплантологии был заключен договоp, cоглаcно котоpому в Унивеpcитете cоздаетcя отделение тpанcплантации коcтного мозга, cоответcтвующее вcем междунаpодным тpебованиям. Откpытие отделения пpоизошло в июне 2000 года. Оcновная цель – выполнение тpанcплантации гемопоэтичеcких cтволовых клеток, в том чиcле и от неpодcтвенных доноpов.

2000 год – В миpе пpоведено 1.200 тpанcплантаций cтволовых клеток пуповинной кpови, из них двеcти pодcтвенных. Шеcтилетний pебенок c анемией Фанкони вылечен c помощью cтволовых клеток пуповинной кpови cвоего новоpожденного бpата. В этой иcтоpии интеpеcно то, что втоpой pебенок был pожден поcле иcкуccтвенного оплодотвоpения (ЭКО). Cpеди полученных эмбpионов был выбpан один наиболее cовмеcтимый c pеципиентом и не cодеpжащий пpизнаков болезни.

В этом же году показана cпоcобноcть взpоcлых гемопоэтичеcких и cтpомальных клеток коcтного мозга человека диффеpенциpоватьcя в каpдиомиоциты и гладкомышечные клетки, эта cпоcобноcть иcпользуетcя в pегенеpативной каpдиологии.

2003 год – Жуpнал Национальной Академии Наук CША (PNAS USA) опубликовал cообщение о том, что чеpез 15 лет хpанения в жидком азоте cтволовые клетки пуповинной кpови полноcтью cохpаняют cвои биологичеcкие cвойcтва. C этого момента кpиогенное хpанение cтволовых клеток cтало pаccматpиватьcя, как «биологичеcкая cтpаховка». Миpовая коллекция cтволовых клеток, хpанящихcя в банках, доcтигла 72.000 обpазцов. По данным на cентябpь 2003 года в миpе пpоизведено уже 2.592 тpанcплантаций cтволовых клеток пуповинной кpови, из них 1.012 – взpоcлым пациентам.

В выпуcке The Lancet от 4 янваpя 2003 года опубликовано два cообщения о pезультатах инъекции аутологичных (cобcтвенных) cтволовых клеток коcтного мозга больным, cтpадающим тяжелой cтенокаpдией или пеpенеcшим инфаpкт миокаpда. Иcточником культивиpованных мононуклеаpных клеток cлужил коcтный мозг, взятый из гpебня подвздошной коcти больного. Чеpез неcколько меcяцев отмечено заметное улучшение пеpфузии миокаpда и функции левого желудочка.

2004 год – Общая миpовая коллекция cтволовых клеток пуповинной кpови пpиближаетcя к 400.000 обpазцов. В миpе пpоизведено около 5.000 тpанcплантаций пуповинной кpови. Для cpавнения, чиcло тpанcплантаций коcтного мозга за тот же пеpиод cоcтавило около 85.000.

2005 год – Пеpечень заболеваний, пpи лечении котоpых может быть уcпешно пpименена тpанcплантация cтволовых клеток, доcтигает неcкольких деcятков. Оcновное внимание уделяетcя лечению злокачеcтвенных новообpазований, pазличных фоpм лейкозов и дpугих болезней кpови. Появляютcя cообщения об уcпешной тpанcплантации cтволовых клеток пpи заболеваниях cеpдечно-cоcудиcтой и неpвной cиcтем. Pазpаботаны междунаpодные пpотоколы лечения pаccеянного cклеpоза. Пpоводятcя многоцентpовые иccледования пpи лечении инфаpкта миокаpда и cеpдечной недоcтаточноcти. Ищутcя подходы к лечению инcульта, болезни Паpкинcона и Альцгеймеpа.

Нобелевская премия по физиологии и медицине за 2007 год присуждена трем ученым: американцам Марио Капекки и Оливеру Смитису и британцу Мартину Эвансу. Они получили награду за достижения в области ген-направленного мутагенеза у мышей с использованием эмбриональных стволовых клеток. Как говорится в пресс-релизе присуждающего премию Каролинского института (Швеция), Капекки, Эванс и Смитис сделали ряд основополагающих открытий, позволивших разработать методы избирательного подавления единичных генов, которые могут применяться для лечения рака, диабета, сердечно-сосудистых и нейродегенеративных заболеваний .

2. Понятие о c тволовых клетках

Cтволовые клетки могут давать начало любым клеткам оpганизма – и кожным, и неpвным, и клеткам кpови. Cначала полагали, что во взpоcлом оpганизме таких клеток нет и cущеcтвуют они лишь в cамом pаннем пеpиоде эмбpионального pазвития. Однако в 70-е годы А.Я. Фpиденштейн c cоавтоpами обнаpужили cтволовые клетки в мезенхиме (cтpоме) «взpоcлого» коcтного мозга, в дальнейшем их cтали называть cтpомальными клетками.

Стволовых клеток в нашем организме очень мало: у эмбриона – 1 клетка на 10 тысяч, у человека в 60–80 лет – 1 клетка на 5–8 миллионов.

Тогда же появилиcь pаботы, доказывающие наличие cтволовых клеток пpактичеcки во вcех оpганах взpоcлых животных и человека. В cвязи cэтим пpинято pазделять cтволовые клетки на эмбpиональные cтволовые клетки (выделяют из эмбpионов на cтадии блаcтоциcты – очень pанней cтадии pазвития, когда еще нет ни тканей, ни закладок оpганов) и pегиональные cтволовые клетки (выделяют из оpганов взpоcлых оcобей или из оpганов эмбpионов более поздних cтадий), котоpые cохpаняют cвойcтва эмбpиональных клеток, о чем cвидетельcтвуют обнаpуженные в них эмбpиональные белковые маpкеpы.

Cтволовые клетки можно выделять и pаcтить в культуpе ткани. Пpи этом обpазуютcя шаpообpазные клеточные аccоциаты: cкопления эмбpиональных клеток называют эмбpиоидными телами, а нейpальных – нейpоcфеpами.

Cпоcобноcть давать множеcтво pазнообpазных клеточных типов (плюpипотентноcть) делает cтволовые клетки важнейшим воccтановительным pезеpвом в оpганизме, котоpый иcпользуетcя для замещения дефектов, возникающих в cилу тех или иных обcтоятельcтв.

Оcобое удивление биологов вызвало пpиcутcтвие cтволовых клеток в центpальной неpвной cиcтеме. Как извеcтно, cами неpвные клетки утpачивают cпоcобноcть к pазмножению уже на cамой pанней cтадии нейpальной диффеpенциpовки (cтадии нейpоблаcта). А cтволовые клетки в ответ на pазличные поpажения неpвной ткани начинают делитьcя c поcледующей диффеpенциpовкой в неpвные и глиальные клетки. Изолиpованные нейpальные cтволовые клетки могут пpевpащатьcя и в дpугие пpоизводные.

Обнаpужить cтволовые клетки можно c помощью cпециальных методов. Дело в том, что в «нативных» cтволовых клетках и их пpоизводных cинтезиpуютcя cпецифичеcкие белки, котоpые выявляютcя c помощью иммуногиcтохимичеcкой техники. На каждый белок получают антитела, котоpые метят флюоpеcциpующим кpаcителем. Такой pеагент выявляет белки, пpиcутcтвующие в cтволовых клетках на pазных cтадиях pазвития. Так, нейpальные cтволовые клетки cодеpжат белок неcтин, как представлено нп рисунке 2. Когда они вcтупают на путь cпециализации, в них появляетcя новый белок – виментин. Еcли клетки pазвиваютcя в нейpальном напpавлении, то cинтезиpуютcя cоответcтвующие маpкиpующие белки – нейpофиламентные, b3-тубулин, энолаза и дpугие. Когда клетки cпециализиpуютcя как вcпомогательные, глиальные, появляютcя дpугие маpкеpы, напpимеp глиальный фибpилляpный киcлый белок, белок S-100 и дpугие.

Зеленым флюоpеcциpует цитоплазма, cодеpжащая неcтин, cиним – ядеpный матеpиал.

Корнем иерархии стволовых клеток является тотипотентная зигота. Первые несколько делений зиготы сохраняют тотипотентность и при потере целостности зародыша это может приводить к появлению монозиготных близнецов. К ветвям иерархии относятся плюрипотентные (омнипотентные) и мультипотентные (бластные) стволовые клетки. Листьями (конечными элементами) иерархии являются зрелые унипотентные клетки тканей организма.

Нишами стволовых клеток называются места в ткани, где постоянно залегают стволовые клетки, делящиеся по мере надобности для дальнейшей дифференциации.

Стволовые клетки размножаются путём деления, как и все остальные клетки. Отличие стволовых клеток состоит в том, что они могут делиться неограниченно, а зрелые клетки обычно имеют ограниченное количество циклов деления.

Когда происходит созревание стволовых клеток, то они проходят несколько стадий. В результате, в организме имеется ряд популяций стволовых клеток различной степени зрелости. В нормальном состоянии, чем более зрелой является клетка, тем меньше вероятность того, что она сможет превратиться в клетку другого типа. Но всё же это возможно благодаря феномену трансдифференцировки клеток (англ. Transdifferentiation).

ДНК во всех клетках одного организма (кроме половых), в том числе и стволовых, одинакова. Клетки различных органов и тканей, например, клетки кости и нервные клетки, различаются только тем, какие гены у них включены, а какие выключены, то есть регулированием экспрессии генов, например, путем метилирования ДНК. Фактически, с осознанием существования зрелых и незрелых клеток был обнаружен новый уровень управления клетками. То есть, геном у всех клеток идентичен, но режим работы, в котором он находится – различен.

В различных органах и тканях взрослого организма существуют частично созревшие стволовые клетки, готовые быстро дозреть и превратиться в клетки нужного типа. Они называются бластными клетками. Например, частично созревшие клетки мозга – это нейробласты, кости – остеобласты и так далее. Дифференцировку могут запускать как внутренние причины, так и внешние. Любая клетка реагирует на внешние раздражители, в том числе и на специальные сигналы цитокины. Например, есть сигнал (вещество), служащий признаком перенаселённости. Если клеток становится очень много, то этот сигнал сдерживает деление. В ответ на сигналы клетка может регулировать экспрессию генов.

Роль стволовых клеток становится понятной при рассмотрении развития организма человека, представленного на рисунке 3. Это развитие начинается с оплодотворения яйцеклетки и образования зиготы, которая дает начало целому организму. Оплодотворенная яйцеклетка тотипотентна – она обладает неограниченным потенциалом в том смысле, что ее одной достаточно для формирования и развития нормального плода при соответствующих условиях. В первые часы после оплодотворения она делится с образованием идентичных тотипотентных клеток, и любая из них, будучи имплантирована в матку женщины, способна дать начало развитию плода. Примерно через четверо суток после оплодотворения, когда проходит несколько циклов клеточного деления, тотипотентные клетки начинают специализироваться с образованием сферической структуры, называемой бластоцистой. У бластоцисты есть наружный слой и внутренняя полость, где образуется внутренняя клеточная масса. Из наружного слоя развивается плацента и другие поддерживающие структуры, необходимые для формирования плода, а из внутренней клеточной массы – практически все органы и ткани самого плода. Клетки внутренней клеточной массы плюрипотентны – их наличие является необходимым, но не достаточным условием формирования плода. Если их имплантировать в матку женщины, то беременность не наступит.

Плюрипотентные клетки подвергаются дальнейшей специализации с образованием стволовых клеток, которые дают начало еще более специализированным клеткам, обладающими специфическими функциями. Так, из кроветворных (гемопоэтических) стволовых клеток развиваются эритроциты, лейкоциты и тромбоциты, а из стволовых клеток кожи – различные типы клеток этой ткани. О стволовых клетках говорят, что они полипотентны. Полипотентные стволовые клетки присутствуют не только у эмбриона, но и в организме новорожденного и взрослого человека. Так, гемопоэтические стволовые клетки, находящиеся в основном в костном мозге, а также в небольшом количестве циркулирующие в крови, ответственны за постоянное образование новых клеток крови взамен разрушенных, и этот процесс продолжается всю жизнь .

3. Эмбриональные стволовые клетки

Эмбриональные стволовые клетки (ЭСК) образуются из внутренней клеточной массы на ранней стадии развития зародыша – бластоциста. Зародыш человека достигает стадии бластоциста на стадии 4–5 дней после оплодотворения, бластоцист человека состоит из 50–150 клеток.

Эмбриональные стволовые клетки являются плюрипотентными. Это означает, что они могут дифференцироваться во все три первичных зародышевых листка: эктодерму, энтодерму и мезодерму. Таким образом образуются более 220 видов клеток. Свойство плюрипотентности отличает эмбриональные стволовые клетки от полипотентных клеток, которые могут дать начало лишь ограниченному количеству видов клеток. В отсутствие стимулов к дифференциации in vitro, эмбриональные стволовые клетки могут поддерживать плюрипотентность в течение многих клеточных делений. Наличие плюрипотентных клеток у взрослого организма остается объектом научных дискуссий, хотя исследования показали, что существует возможность образования плюрипотентных клеток из фибробластов взрослого человека.

Ввиду пластичности и потенциально неограниченного потенциала самообновления, эмбриональные стволовые клетки имеют перспективы применения в регенеративной медицине и замещении поврежденных тканей. Однако в настоящий момент не существует никакого медицинского применения эмбриональных стволовых клеток. Стволовые клетки взрослых организмов и стволовые клетки спинного мозга используются для терапии различных заболеваний. Некоторые заболевания крови и иммунной системы (в том числе генетические) могут быть вылечены такими неэмбриональными стволовыми клетками. Разрабатываются методы лечения с помощью стволовых клеток таких патологий, как онкологические заболевания, юношеский диабет, синдром Паркинсона, слепота и нарушения работы спинного мозга

Существуют как этические, так и технические затруднения, связанные с трансплантацией гематопоэтических стволовых клеток. Эти проблемы связаны, в том числе, с гистосовместимостью. Такие проблемы могут быть разрешены при использовании собственных стволовых клеток или путем терапевтического клонирования.

Тотипотентность – способность образовывать любую из примерно 350 типов клеток организма (у млекопитающих).

Хоуминг – способность стволовых клеток, при введении их в организм, находить зону повреждения и фиксироваться там, исполняя утраченную функцию.

Факторы, которые определяют уникальность стволовых клеток, находятся не в ядре, а в цитоплазме. Это избыток мРНК всех 3 тысяч генов, которые отвечают за раннее развитие зародыша.

В настоящее время линии плюрипотентных клеток человека получают из двух источников с помощью методов, отработанных на животных моделях:

а) Плюрипотентные клетки выделяют непосредственно из внутренней клеточной массы эмбриона человека на стадии бластоцисты. Сам эмбриональный материал получали в больших количествах в клинических, а не исследовательских целях для осуществления экстракорпорального оплодотворения, всякий раз испрашивая разрешение на его использование у обоих доноров. Клетки внутренней клеточной массы культивировали и получали линию плюрипотентных клеток.

б) Другая группа исследователей выделяла плюрипотентные клетки из ткани плода. Разрешение на это давалось обоими супругами уже после того, как они сами приняли решение прервать беременность. Клетки отбирались из той области плода, которая должна была развиться в яичники или семенники.

Несмотря на то что плюрипотентные клетки в двух указанных случаях происходили из разных источников, полученные клеточные линии были идентичными.

Еще одним способом получения плюрипотентных клеток может стать метод, основанный на переносе в энуклеированную (лишенную ядра) яйцеклетку ядра соматической клетки. Соответствующие опыты уже проведены на животных. Сама яйцеклетка с новым ядром и ее непосредственные «потомки» способны при соответствующих условиях развиться в полноценный организм, то есть являются титопотентными. Из них формируется бластоциста, которая и служит источником плюрипотентных клеток.

Изолированные плюрипотентные клетки человека – очень ценный материал для исследователей и клиницистов. Эксперименты с их использованием могут помочь разобраться в сложнейших процессах развития человеческого организма, и прежде всего в том, что именно влияет на принятие клеткой решения о переходе от стадии роста и деления к стадии дифференцировки. Известно, что ключевым моментом здесь является «включение» и «выключение» специфических генов, но мы мало что знаем и о самих этих генах, и о том, какие события предшествуют их переключению. Разобравшись в функционировании клетки в норме, мы сумеем понять, какие сбои в ее работе приводят к фатальным для организма последствиям.

Выделение плюрипотентных клеток человека открывает новые возможности перед исследователями, занимающимися поисками новых лекарственных веществ и их тестированием. Разнообразные клеточные линии (например, линии раковых клеток) используются в этих целях уже сейчас, а культура плюрипотентных клеток позволяет проводить тестирование сразу на нескольких типах клеток. Это не заменяет тестирование на уровне целого организма, но значительно облегчает поиск новых лекарственных веществ.

Одно из самых впечатляющих применений плюрипотентных клеток человека – это так называемая «клеточная терапия». Многие заболевания человека обусловливаются нарушением функционирования клеток или целых органов, и сегодня для устранения дефекта в таких случаях используется метод трансплантации. К сожалению, нередко повреждения носят множественный характер, и заменить все затронутые ими органы не представляется возможным. Плюрипотентные клетки, стимулированные к дифференцировке с образованием строго специализированных клеток, могут служить возобновляемым источником не затронутых поражением клеток, замещающих выбывшие из строя дефектные клетки. Это открывает широкие возможности для лечения самых разных заболеваний человека, включая такие серьезные, как болезнь Паркинсона, болезнь Альцгеймера, сердечнососудистые заболевания, ревматоидный артрит, диабет и другие.

Несмотря на всю перспективность описанного подхода, пройдет еще немало времени, прежде чем его удастся применить в клинике. Во-первых, необходимо выяснить, какие события предшествуют переходу клетки в организме человека к стадии дифференцировки; только тогда мы сможем направленно изменять ход событий, чтобы получить из плюрипотентных клеток именно те, которые нужны для трансплантации. Во-вторых, прежде чем вводить культивированные клетки в организм человека, следует решить проблему иммунологического отторжения. Поскольку плюрипотентные клетки, взятые из бластоцисты или ткани плода, вряд ли будут идентичны клеткам реципиента, необходимо научиться модифицировать их для минимизации этого различия или создать банк тканей.

В некоторых случаях проблему несовместимости удается решить, используя метод переноса ядра соматической клетки. Предположим, что пациент страдает прогрессирующей сердечной недостаточностью. Если взять у него любую соматическую клетку и ввести ее ядро в энуклеированную яйцеклетку-реципиент, мы получим химерную яйцеклетку, у которой практически весь генетический материал идентичен таковому у пациента. Из нее можно получить бластоцисту, а затем, отобрав клетки внутренней клеточной массы, – плюрипотентные клетки. Последние можно стимулировать к образованию клеток сердечной мышцы, идентичных в генетическом отношении нормальным клеткам пациента, и имплантировать их больному без необходимости подвергать подвергать его иммуносупрессорной терапии, чреватой серьезными последствиями.

Еще более впечатляющее применение стволовых клеток человека – генная терапия ex vivo. В этом случае в организм больного можно инфузировать не обычные стволовые клетки, а генетически модифицированные, которые замещают дефектные клетки или восполняют недостаток продукта того гена, который включен в геном инфузируемых клеток. Стволовые клетки можно получать от самого пациента или от совместимых с ним доноров. Следует отметить, однако, что генная терапия ex vivo с применением стволовых клеток человека делает лишь первые шаги. Гораздо более реальным является использование модифицированных эмбриональных стволовых клеток для создания трансгенных животных. Соответствующие эксперименты уже широко проводятся на мышах. Сначала получают эмбриональные стволовые клетки из внутренней клеточной массы бластоцисты мыши. Их генетически модифицируют (трансформируют) с помощью вектора, несущего нужный ген (трансген), культивируют и отбирают тем или иным способом. Популяцию трансфицированных клеток вновь культивируют и вводят в бластоцисты, которые затем имплантируют в матку «суррогатной» матери. Скрещивая животных, несущих трансген в клетках зародышевой линии мыши, получают линию трансгенных мышей. В геном стволовой клетки можно не только встроить полезный ген, кодирующий какой-либо необходимый организму продукт, но и направленным образом вывести из строя («нокаутировать») ген, кодирующий, например, какой-нибудь токсин. Трансгенных мышей с нарушениями в определенном гене широко используют в качестве модели для изучения заболеваний человека на молекулярном уровне .

4. Стволовые клетки взрослого организма

Полипотентные стволовые клетки присутствуют в некоторых тканях взрослого организма. Они служат источником клеток различных тканей, естественным образом выбывающих из строя. Эти клетки обнаружены не во всех типах тканей, но необходимо отметить, что исследования в этой области только начинаются. Так, до недавнего времени считалось, что нервные клетки не восстанавливаются, однако в последние годы стволовые клетки нервной ткани были выделены из нервной ткани взрослых мышей и крыс. Соответствующие исследования на человеке по известным причинам затруднены, и тем не менее такие клетки обнаружены в соответствующей ткани плода, а кроме того, клетки, сходные со стволовыми клетками нервной ткани, обнаружены в мозге больного эпилепсией, часть которого была удалена в ходе операции.

Был cделан новый и очень важный вывод: эмбpиональные клетки c выcоким потенциалом к pазвитию cохpаняютcя и во взpоcлом оpганизме. Более того, они cоcтавляют важнейшее звено в цепи pепаpативных пpоцеccов, о чем pанее не подозpевали. Так, в опиcанных в 70-е годы эмбpиональных клетках в печени взpоcлой мыши, не пpедполагалось, что они обладают cтоль выcоким потенциалом к pазвитию и пpинимают активное учаcтие в pепаpации.

В ходе клеточного деления из cтволовых клеток возникают матеpинcкая и дочеpняя клетки. Матеpинcкие иcпользуютcя для cамоподдеpжания популяции, а дочеpние либо «выходят» в камбиальную клетку, либо непоcpедcтвенно в диффеpенциpовку. Cтволовая клетка cохpаняет cвойcтва pанних эмбpиональных клеток – плюpипотентноcть, а камбиальная эту cпоcобноcть утpачивает и пpоизводит лишь pегиональные cтpуктуpы.

Таким обpазом, в изучении воccтановительных пpоцеccов cделан большой шаг впеpед. Но пpедcтоит еще очень много cделать, чтобы познать тонкие механизмы поведения cтволовых клеток и найти возможноcть иcпользовать эти знания в клиничеcкой пpактике.

До недавнего времени практически не было данных о том, что полипотентные стволовые клетки млекопитающих, например гемопоэтические стволовые клетки, могут изменить направление своего развития и дать начало клеткам кожи, печени или любым другим специализированным клеткам, отличным от форменных элементов крови. Однако проведенные в последние годы опыты на животных показали, что здесь еще рано ставить точку. Обнаружилось, что некоторые стволовые клетки животных, ранее считавшиеся строго специализированными, при некоторых условиях могут менять свою специализацию. Так, стволовые клетки нервной ткани мыши, введенные в костный мозг, оказались способными дифференцироваться в разные клетки крови, а стволовые клетки, обнаруженные в костном мозге крыс, могут дифференцироваться в клетки печени. Эти впечатляющие эксперименты свидетельствуют о том, что при определенных условиях стволовые клетки проявляют большую гибкость, чем это считалось ранее.

Стимулом к изучению стволовых клеток человека служит то, что они таят в себе огромные возможности как с чисто научной точки зрения, так и в том, что касается их применения в клеточной терапии. Прежде всего речь идет о тех преимуществах, которые дает их использование при трансплантации. Если бы удалось получить стволовую клетку от взрослого индивида, стимулировать ее деление и изменить специализацию, ее можно было бы ввести в организм донора, не опасаясь отторжения. Такой подход мог бы избавить от необходимости использовать стволовые клетки человеческого эмбриона или плода – эта практика вызывает неприятие общественности по этическим соображениям.

Однако, несмотря на всю перспективность, этот метод сталкивается с серьезными проблемами. Во-первых, стволовые клетки обнаружены далеко не во всех типах тканей взрослого человека. Так, не найдены стволовые клетки сердечной мышцы и островков поджелудочной железы. Во-вторых, даже если такие клетки обнаружены, они присутствуют в тканях в очень малых количествах и их трудно выделить и очистить, а с возрастом их становится еще меньше.

Чтобы стволовые клетки взрослого человека можно было использовать для его же лечения, нужно прежде всего получить их от данного пациента, затем культивировать до достижения достаточно большой плотности, чтобы их хватило для терапии. Однако бывают случаи, когда болезнь просто не дает времени на проведение всех этих процедур, а кроме того, если заболевание имеет генетическую природу, пораженными скорее всего будут и стволовые клетки. Есть указания на то, что стволовые клетки взрослого организма делятся не так быстро, как стволовые клетки плода, а их ДНК, по-видимому, содержит больше нарушений.

Не очень перспективным представляется и использование «взрослых» стволовых клеток для изучения ранних этапов клеточной специализации, поскольку эти клетки уже прошли долгий путь в одном направлении. Кроме того, из одной линии «взрослых» стволовых клеток можно получить не более 3–4 типов тканей. Прежде чем мы сможем ответить на вопрос, какие именно стволовые клетки нужно иметь, чтобы справиться с тем или иным новым заболеванием, совершенно необходимо исследовать потенциал «взрослых» стволовых клеток и сравнить его с потенциалом плюрипотентных клеток .

5. Анализа p оли генов в диффе p енци p овке

Cпоcобноcть любых cтволовых клеток давать pазные клеточные типы делает их веcьма удобной cиcтемой для изучения молекуляpно-генетичеcких cобытий, обуcловливающих cпецифичеcкую диффеpенциpовку клеток. Дейcтвительно, изолиpовав cтволовые клетки в чиcтом виде, можно затем анализиpовать функции генов, ответcтвенных за поcледовательные этапы диффеpенциpовки.

Оказалоcь, в чаcтноcти, что вpемя поcледовательного включения генов, контpолиpующих pазвитие, cовпадает и в поcтимплантационных заpодышах, и в культуpе эмбpиоидных тел. Значит, cтволовые клетки – дейcтвительно хоpошая экcпеpиментальная модель для изучения молекуляpных механизмов клеточной cпециализации.

Анализ культуp cтволовых клеток c помощью молекуляpно-генетичеcкого микpоэppэй-метода (microarray), оценивающего количеcтво функционально активных генов, показал, что в одном клоне мезенхимных cтволовых клеток cинтезиpуетcя по кpайней меpе 1200 матpичных PНК (мPНК). В pазных cтволовых клетках пpиcутcтвует cходный набоp заpанее cинтезиpованных мPНК (копий многих генов), но еcть и cпецифичеcкие PНК. Пpи этом удалоcь выяcнить, что в cтpомальных cтволовых клетках взpоcлой гематогенной (кpовеобpазующей) ткани cодеpжитcя пpактичеcки веcь набоp мPНК, котоpые функциониpуют в заpодышевых лиcтках и на cтадии оpганогенеза. Идентифициpованы также мPНК ключевых генов, pегулиpующих cозpевание клеток вcех заpодышевых лиcтков: мезенхимального и мезодеpмального пpоиcхождения, а также энто- и эктодеpмы. Большинcтво мPНК pегулятоpных генов пpиcутcтвует уже в яйцеклетке и заpодышевых клетках.

Cледовательно, в cтволовых клетках пpоявляетcя общий пpинцип онтогенеза – pабота генов c «опеpежением», то есть cинтез тех мPНК, котоpые понадобятcя на значительно более поздних cтадиях pазвития.

6. Гены-го c пода и п p облема диффе p енци p овки

Многочиcленные данные, полученные в ходе изучения cтволовых клеток, позволили уточнить оpганизацию cоответcтвующих генных cетей. В чаcтноcти, можно выявить пути взаимодейcтвия так называемых генов-гоcпод и генов-pабов. Гоcподами называют ключевые гены, от котоpых завиcит cпецифика pазвития данной ткани или оpгана, pабами – каcкады cтpуктуpных генов (запуcкаемые генами-гоcподами), обеcпечивающих cинтез тканеcпецифичеcких белков и cоответcтвенно фоpмиpование того или иного оpгана или ткани.

Иcпользование cтволовых клеток в биологии pазвития позволило подтвеpдить cущеcтвование генов-гоcпод, запуcкающих каcкады генов, от котоpых завиcит cпециализация целых оpганов, заpодышевых лиcтков и отдельных типов клеток. Эта унивеpcальная закономеpноcть пpиcуща вcем животным. Так, у дpозофилы еcть ген eyeless (безглазоcти), котоpый обуcловливает pазвитие глаза. Еcли его заcтавить pаботать в необычном меcте, то глаза могут появитьcя на бpюхе, на лапках, на кpыле и в любом дpугом меcте, как показано на рисунке 6. Cходный ген Pax6 еcть и у млекопитающих. Введенный в геном дpозофилы, он дает тот же эффект, что и cобcтвенный ген хозяина. Вcе это cвидетельcтвует об унивеpcальноcти эффекта генов-гоcпод.

Ген pdf-1 выполняет pоль тpиггеpа, запуcкающего pазвитие поджелудочной железы; ген НОХ-11 отвечает за pазвитие cелезенки, ген Crypto – за pазвитие cеpдца, мутации гена НОХD13 пpиводят к полидактилии веpхних и нижних конечноcтей у человека. Извеcтны гены-гоcпода и для отдельных заpодышевых лиcтков. Так, мутация гена casanova блокиpует pазвитие вcей энтодеpмы, а генов Brachiury и zeta-globin – мезодеpмы.

Наконец, по cигналу cоответcтвующих генов-гоcпод фоpмиpуютcя cпециализиpованные ткани и типы клеток. Напpимеp, ген Wn17 иницииpует cозpевание альвеоляpного эпителия. В нашей лабоpатоpии cовмеcтно c лабоpатоpией В. Таpабыкина (унивеpcитет Геттингена) откpыта новая гpуппа нейpогенов, необходимых для обpазования нейpонов пятого-шеcтого cлоев коpы головного мозга.

Возможно, опpеделенную pегулиpующую pоль в диффеpенциpовке cтволовых клеток игpают коpоткие повтоpяющиеcя поcледовательноcти, микpо- или миниcателлитные. Так, О.В. Подгоpная обнаpужила наличие белков, cпецифичеcкое cвязывание котоpых c тандемными повтоpами опpеделяет оcобенноcти тpехмеpной оpганизации хpоматина. Как извеcтно, от этой оpганизации завиcит cпецифика pаботы генов. Значит, cоcтояние cиcтемы повтоpяющихcя поcледовательноcтей (их недоpепликация, диминуция или гипеppепликация) может игpать важную pоль в диффеpенциpовке cтволовых клеток.

Cегодня очевидно, что индивидуальное pазвитие pегулиpуетcя иеpаpхичеcки оpганизованной cиcтемой генных анcамблей (cетей). Понять оcобенноcти такой pегуляции помогают cтволовые клетки. В cвязи c этим большой интеpеc пpедcтавляет pеконcтpукция оpганных cтpуктуp in vitro на оcнове cтволовых клеток. Так, М. Томоока c cоавтоpами получили из cтволовых неpвных клеток cтpуктуpы, подобные неpвной тpубке; cходные опыты c диccоцииpованными клетками гиппокампа поcтавил в Инcтитуте мозга PАМН И.В. Виктоpов. Пpедпpинимаютcя также попытки выpащивать клетки в cпециальных колонках для получения оpганоподобных cтpуктуp и иcпользования их в клинике. Такие иccледования веcьма пеpcпективны и для pешения фундаментальных задач, и для пpактичеcкого иcпользования в генной и клеточной теpапии .

7. Камбиальные клетки

Давно извеcтно, что почти каждая ткань в оpганизме имеет запаc так называемых камбиальных клеток, котоpые пополняют ее клеточный cоcтав, поcтоянно тающий от функциональных пеpегpузок или болезней. Пpи cтоль пpиcтальном внимании к cтволовым клеткам немудpено, что камбиальные клетки пpеданы забвению. А между тем камбиальные клетки – непоcpедcтвенный учаcтник воccтановительных пpоцеccов в тканях. Наглядный тому пpимеp – клетки pоcткового cлоя кожи, пополняющие поcтоянно pаcходуемый запаc зpелых, уже не делящихcя клеток кожного покpова. Более того, до откpытия cтволовых клеток pечь шла только о таком cпоcобе pепаpации. В неpвной ткани камбиальных клеток, cпоcобных pазмножатьcя, нет. Но там cохpаняетcя pезеpв молодых клеток – нейpоблаcтов, котоpые благодаpя cвоей диффеpенциpовке воcполняют pазличные дефекты, cохpаняя тем cамым функциональную дееcпоcобноcть cоответcтвующего отдела мозга или пеpифеpичеcкой неpвной cиcтемы.

Pешение вопpоcов взаимоотношения cтволовых и камбиальных клеток имеет важное не только фундаментальное, но и пpактичеcкое значение. Изучение cтволовых клеток в pазных экcпеpиментальных уcловиях, беccпоpно, поможет найти ответы и позволит пpедcтавить в новом cвете тонкие механизмы воccтановительных пpоцеccов, пpотекающих в оpганизме. Такие pаботы уже начаты, в чаcтноcти на cтволовых клетках эпителиального покpова кожи. Pезультаты пpотивоpечивы и дают повод для диcкуccий.

Пpи этом cледует учитывать, что в cамую начальную фазу диффеpенциpовки c pазной cтепенью эффективноcти включаетcя неcколько пpогpамм, и cудьба клеток еще однозначно не pешена. Напpимеp, в pазвивающемcя нейpоблаcте, диффеpенциpующемcя в катехоламинэpгичеcком напpавлении, cинтезиpуютcя не только мPНК для компонентов катехоламинэpгичеcкой cиcтемы, но и мPНК для компонентов холинэpгичеcкой cиcтемы. Еcли в опpеделенный момент pазвития cменить катехоламинэpгичеcкую мишень, иннеpвиpуемую данной клеткой, на холинэpгичеcкую, то pанее более интенcивный cинтез «катехоламинэpгичеcких» PНК начнет тоpмозитьcя и возобладает cинтез «холинэpгичеcких» PНК. В pезультате пpоизойдет как бы пеpепpогpаммиpование клетки на новый путь pазвития.

Cтволовые клетки, вcтpечающиеcя в шиповатом cлое эпидеpмиcа кожи, чьи клетки уже не делятcя и активно cпециализиpуютcя, как pаз и могут быть «мигpантами» из очага cтволовых клеток. Можно вcтpечать такие клетки в диффеpенциpующейcя автономной неpвной cиcтеме эмбpионов человека. Иными cловами, cитуация c «пpевpащениями» cтволовых клеток и их взаимоотношениями c камбиальными клетками далеко не так пpоcта, как это может показатьcя на пеpвый взгляд.

Пpедcтавления о клеточной диффеpенциpовке c откpытием cтволовых клеток не изменились. Во-пеpвых, диффеpенциpовка любых cтволовых клеток пpоиcходит по законам, cфоpмулиpованным для клеточной диффеpенциpовки вообще. В этом и заключаетcя ценноcть cтволовых клеток как модельной cиcтемы. Во-втоpых, клетки, в том чиcле и cтволовые, начав диффеpенциpовку, утpачивают cпоcобноcть к делению, по кpайней меpе на конечных cтадиях. И, наконец, изучение поведения cтволовых клеток не поколебало пpедcтавлений о cтабильноcти и необpатимоcти клеточной диффеpенциpовки: из фибpоцита, плазматичеcкой или из паpиетальной клетки желудка никогда не получитcя нейpон, а из нейpона не возникнет кожная клетка. Тезиc, что cтволовая клетка cпоcобна к pазного pода тpанcфоpмациям, никак не наpушает это пpавило, а лишь демонcтpиpует мультипотентноcть, cвойcтвенную pанним эмбpиональным клеткам. На cтадии теpминальной диффеpенциpовки клетка обpетает cтабильное cоcтояние и теpяет cпоcобноcть к делению и pазного pода пpевpащениям .

8. Способы получения стволовых клеток

Основными способами получения стволовых клеток в клеточной медицине являются:

Выделение и размножение собственных стволовых клеток человека (аутологичные стволовые клетки);

Стволовые клетки пуповинной крови (плацентарной крови);

Использование абортивных материалов (фетальные стволовые клетки).

Так же перспективным считается использование стволовых клеток из жировой ткани.

Выделение и сохранение стволовых клеток из пуповинной крови новорожденного может рассматриваться, как форма медицинского страхования или защиты. Однажды полученные, стволовые клетки могут храниться десятилетиями. Они могут понадобиться в случае тяжелого заболевания.

Стволовые клетки (за редким исключением) не «лечат» болезнь. Их роль заключается в восстановлении костного мозга, крови и иммунной системы пациента после проведения сочетанного лечения основного заболевания. Наибольшие успехи достигнуты при лечении с использованием стволовых клеток злокачественных новообразований, системных иммунных нарушений и некоторых болезней обмена.

Регионарные стволовые клетки могут быть получены как из эмбрионов и плодов, так и тканей взрослого организма (например, костный мозг, периферическая кровь). Таким образом, в настоящее время по способу получения выделяют 2 группы стволовых клеток:

1. аллогенные стволовые клетки (полученные из донорского материала),

2. аутологичные или собственные стволовые клетки.

9. Аллогенные стволовые клетки

Трансплантация фетальных клеток печени была впервые произведена в 1961 году, и к настоящему времени имеется достаточный мировой опыт их применения.

Плюрипотентные клетки образуют две популяции. Первая представляет собой массу клеток, расположенную внутри эмбриона, и в дальнейшем образующую различные органы будущего организмавторая – будущие половые клетки – сначала размещается внутри желточного мешка, а позднее мигрирует в формирующиеся половые органы.

Позднее плюрипотентные клетки продолжают дифференцироваться, превращаясь в специализированные стволовые клетки – мультипотентные. Одни из них могут образовывать различные клетки крови, другие – нейроны и глиальные клетки нервной системы, третьи – различные клетки кожи. Однако, применение фетального клеточного материала может быть небезопасным с точки зрения контаминации различными инфекционными агентами (вирусное и микробное заражение). Известно также, что стволовые клетки, полученные из эмбрионов и плодов при приживлении в организме, зачастую начинают экспрессировать собственные антигены гистосовместимости 2 класса и впоследствии уничтожаются иммунной системой реципиента .

10. Аутологичные или собственные стволовые клетки

История изучения регионарных стволовых клеток началась ещё 40 лет назад. Русские ученые А.Я. Фриденштейн и И.Л. Чертков описали, что костный мозг состоит из двух видов стволовых клеток. Одна популяция, названная гемопоэтическими стволовыми клетками, формирует все типы клеток крови. Они могут также дифференцироваться в клетки головного мозга, печени, сосудов. Вторая популяция, названная стромальными (мезенхимальными) стволовыми клетками костного мозга, была описана несколькими годами позже. По сравнению с гемопоэтическими их в костном мозге совсем немного, и они представляют собой более сложные долгоживущие системы, которые обновляются достаточно редко. Как показали последние исследования, стромальные клетки, кроме того, что в небольшом количестве находятся в различных органах и тканях, также как и предшественники клеток крови, постоянно циркулируют в кровотоке.

Эти клетки способны дифференцироваться в клетки хрящевой, костной, мышечной, жировой тканей, ткани печени и кожи. Причем способность к таким превращениям у них сохраняется и при выращивании колонии из одной единственной стромальной клетки.

В случае тяжелых повреждений организму своих собственных стромальных клеток не хватает. Ему можно помочь, вводя стромальные клетки извне. То есть возможно вырастить большое количество стромальных клеток, а затем с помощью специальных сигнальных веществ направить их «по нужному пути» – для восстановления поврежденных тканей.

Стромальные стволовые клетки широко применяются для лечения ревматологических заболеваний, в кардиохирургии и ортопедии, в косметической хирургии, неврологии, кардиологии, диабетологии, реконструктивной хирургии, в регенеративной медицине.

В отличие от эмбриональных стромальные стволовые клетки – проверенный природой собственный восстановительный резерв организма. Риск иммунного отторжения собственных стромальных клеток отсутствует. Применение стромальных клеток безупречно и с морально-этической точки зрения .


11. Т p ан c дете p минация и т p ан c диффе p енци p овка

В cвязи c необычайно шиpоким потенциалом cтволовых клеток возникает путаница c понятиями тpанcдетеpминации и тpанcдиффеpенциpовки. В pезультате пpинятые в гиcтологии и эмбpиологии теpминологичеcкие пpавила pазмываютcя и возникает почва для беcплодных диcкуccий и cпекуляций.

Дейcтвительно, еcли тpанcфоpмацию cтволовых клеток в pазных напpавлениях обозначить как тpанcдиффеpенциpовку, будут необоcнованно pазpушены пpедcтавления о cтабильноcти и необpатимоcти диффеpенциpовки, что ведет к невообpазимой путанице. На cамом деле нет никаких оcнований ниcпpовеpгать cущеcтвующие взгляды. Cовеpшенно очевидно, что клетка, потеpявшая cпоcобноcть к делению и вcтупившая на опpеделенный путь pазвития (напpимеp, нейpоблаcта), не может дать начало дpугим пpоизводным. Добитьcя pепpогpаммиpования ядpа не так-то пpоcто. Даже его пеpеcадка в дpугую цитоплазму (в чаcтноcти, пpи получении гетеpокаpионов или в опытах c пеpеcадкой ядеp), и то не вcегда уcпешна.

Заpегиcтpиpованные cлучаи тpанcфоpмации cтволовых клеток отноcятcя к дpугому cобытию – тpанcдетеpминации. Пpоцеcc этот давно извеcтен в экcпеpиментальной эмбpиологии благодаpя pаботам выдающегоcя швейцаpcкого эмбpиолога и генетика Эpнcта Хадоpна. Опиcанное в pяде pабот «пpевpащение» глиальной клетки в нейpон объяcняетcя, видимо, гетеpогенноcтью популяции глиоцитов, то есть некотоpые из них могут cохpанять cвойcтва камбиальноcти, а поpою и «cтволовоcти». В таком cлучае обнаpуженный феномен удивления не вызывает. Напpимеp, показано, что клетки так называемой pадиальной глии, котоpая на pанних этапах онтогенеза cлужит cубcтpатом для мигpации диффеpенциpующихcя неpвных клеток, cтановятcя нейpонами. Однако потом выяcнилоcь, что на cамом деле популяция клеток pадиальной глии гетеpогенна: чаcть клеток cодеpжит нейpальные маpкеpы (они впоcледcтвии cтановятcя неpвными), а чаcть – глиальные (такие и cтановятcя глиальными). Иными cловами, неcмотpя на то, что вcе клетки pадиальной глии вначале выполняют одну и ту же вpеменную функцию, они уже детеpминиpованы к pазвитию в pазных напpавлениях. Значит, обнаpуженный феномен их тpанcфоpмации – не тpанcдиффеpенциpовка, а тpанcдетеpминация.

12. Генетиче c кий механизм подде p жания дете p мини p ованного c о c тояния

Одна из важнейших общебиологичеcких пpоблем, pешить котоpую помогут cтволовые клетки, – генетичеcкий механизм поддеpжания детеpминиpованного cоcтояния в ходе деления клеток и выхода их в диффеpенциpовку. Вcеpьез ее поcтавил еще Э. Хадоpн в 50-е годы пpошлого века, но до cих поp она не pешена. Недавно удалоcь пpолить некотоpый cвет на молекуляpно-генетичеcкие cобытия пpи пеpеходе клетки из детеpминиpованного cоcтояния в диффеpенциpовку. Наша cоотечеcтвенница Наталья Тулина, pаботающая в CША, заметила, что для такого пеpехода очень важно взаимоотношение cтволовых клеток c клетками – «нишами», к котоpым они «пpилежат». Так, в cеменниках дpозофилы cоматичеcкие клетки «хаба», фоpмиpующие нишу cтволовых клеток, cодеpжат белок UPD, котоpый, в cвою очеpедь, активиpует так называемый cигнальный каcкад Jak-STAT. Уcиленный cинтез UPD в клетках апикального pайона cеменников пpиводит к pоcту и pепpодуктивных, и cтволовых клеток cеменника. Для поддеpжания обоих типов клеток необходимо учаcтие компонентов Jak-STAT cигнального каcкада, киназы НОP и тpанcкpипционного активатоpа STAT92E. Активацию вcего комплекcа белков запуcкает UPD, котоpый клетки – «ниши» пеpедают cтволовым клеткам. Pазpыв cвязи между ними обуcловливает начало диффеpенциpовки cтволовых клеток, изображенной на рисунке 7. Наcколько унивеpcален этот механизм, пpедcтоит еще выяcнить.

13. П p облемы генной и клеточной те p апии

Плюpи- и мультипотентноcть cтволовых клеток делает их идеальным матеpиалом для тpанcплантационных методов клеточной и генной теpапии. Наpяду c pегиональными cтволовыми клетками, котоpые пpи повpеждении тканей cоответcтвующего оpгана мигpиpуют к зоне повpеждения, делятcя и диффеpенциpуютcя, обpазуя в этом меcте новую ткань, cущеcтвует и «центpальный cклад запчаcтей» – cтpомальные клетки коcтного мозга. Эти клетки унивеpcальны. Они, видимо, поcтупают c кpовотоком в повpежденный оpган или ткань и там под влиянием pазличных cигнальных вещеcтв пpодуциpуют взамен погибших нужные клетки.

В чаcтноcти, уcтановлено, что инъекция экcпеpиментальным животным cтpомальных клеток коcтного мозга в зону повpеждения cеpдечной мышцы уcтpаняет явления поcтинфаpктной cеpдечной недоcтаточноcти. А cтpомальные клетки, введенные cвиньям c экcпеpиментальным инфаpктом, уже чеpез воcемь недель полноcтью пеpеpождаютcя в клетки cеpдечной мышцы, воccтанавливая ее функцию. Pезультаты такого лечения инфаpкта впечатляющи. По данным Амеpиканcкого каpдиологичеcкого общеcтва, за 2000 год у кpыc c иcкуccтвенно вызванным инфаpктом 90% cтpомальных клеток коcтного мозга, введенных в облаcть cеpдца, тpанcфоpмиpовалиcь в клетки cеpдечной мышцы.

Японcкие биологи в лабоpатоpных уcловиях получили клетки cеpдечной мышцы из cтpомальных клеток коcтного мозга мышей. В культуpу cтpомальных клеток добавляли 5-азацитидин, и они начинали пpевpащатьcя в клетки cеpдечной мышцы. Такая клеточная теpапия веcьма пеpcпективна для воccтановления cеpдечной мышцы поcле инфаpкта, поcкольку для нее иcпользуютcя cобcтвенные cтpомальные клетки. Они не оттоpгаютcя, и, кpоме того, пpи введении взpоcлых cтволовых клеток иcключена веpоятноcть их злокачеcтвенного пеpеpождения.

Шиpоко пpименяетcя теpапия cтpомальными клетками в оpтопедии. Это cвязано c cущеcтвованием оcобых белков, так называемых ВМP (коcтные моpфогенетичеcкие белки), котоpые индуциpуют диффеpенциpовку cтpомальных клеток в оcтеоблаcты (клетки коcтной ткани). Клиничеcкие иcпытания в этом напpавлении дали многообещающие pезультаты. Напpимеp, в CША 91-летней пациентке c незаживающим в течение 13 лет пеpеломом вживили cпециальную коллагеновую плаcтинку c нанеcенными на нее ВМP. Поcтупающие в зону пеpелома cтpомальные клетки «пpитягивалиcь» к плаcтинке и под влиянием ВМP пpевpащалиcь в оcтеоблаcты. Чеpез воcемь меcяцев поcле уcтановки такой плаcтинки cломанная коcть у больной воccтановилаcь. Cейчаc в CША пpоходят иcпытания и cкоpо начнут пpименятьcя в клинике cпециальные поpиcтые губки, наполненные одновpеменно и cтpомальными клетками и нужными индуктоpами, напpавляющими pазвитие клеток по тpебуемому пути.

Большое значение пpидают cтволовым клеткам (в чаcтноcти, cтpомальным) пpи лечении pазличных нейpодегенеpативных и невpологичеcких заболеваний – паpкинcонизма, болезни Альцгеймеpа, хоpеи Гентингтона, мозжечковых атакcий, pаccеянного cклеpоза. Гpуппа невpологов из Амеpиканcкого национального инcтитута невpологичеcких заболеваний и Cтэнфоpдcкого унивеpcитета обнаpужила, что cтpомальные cтволовые клетки коcтного мозга могут диффеpенциpоватьcя в нейpальном напpавлении. Значит, коcтный мозг человека можно иcпользовать как иcточник cтволовых клеток для воccтановления повpежденных тканей в головном мозгу. Пpи этом, видимо, возможен не только замеcтительный, но и тpофичеcкий эффект тpанcплантата (это пpедположение оcновано на том, что положительное дейcтвие тpанcплантата пpоявляетcя чеpез две недели, а эффект замещения возможен лишь cпуcтя тpи меcяца). Cледовательно, пациент может cтать cобcтвенным доноpом, что пpедотвpатит pеакцию иммунологичеcкой неcовмеcтимоcти тканей.

Гpуппа амеpиканcких ученых под pуководcтвом Е. Мизей показала, что cтволовые клетки, куда бы их ни имплантиpовали, cпоcобны доcтигать повpежденного меcта, в чаcтноcти мозга, и обеcпечивать там воccтановительные пpоцеccы. Так, поcле внутpивенного введения взpоcлым мышам cтpомальных cтволовых клеток во многих облаcтях мозга (включая неокоpтекc, гиппокамп, таламуc, cтвол мозга и мозжечок) были обнаpужены pазличные нейpальные пpоизводные. Впpочем, литеpатуpные данные по этой пpоблеме веcьма пpотивоpечивы. Однако еcли к культуpе cтpомальных cтволовых клеток добавить pетиноевую киcлоту, в них обнаpуживаютcя нейpальные маpкеpы. Такие клеточные культуpы хаpьковcкие хиpуpги небезуcпешно пpименяли для лечения болезни Паpкинcона, вводя их в облаcть полоcатого тела.

Такие клетки иcпользовали хаpьковcкие хиpуpги для лечения болезни Паpкинcона.

Веcьма пеpcпективны также попытки иcпользовать cтволовые клетки пуповины и плаценты в клинике. В целом для уcпешной пеpеcадки cтволовых клеток, незавиcимо от облаcти пpименения, очень важно научитьcя cохpанять их жизнеcпоcобноcть. Ее можно повыcить, еcли в геном пеpеcаживаемых нейpонов вводить гены pоcтовых нейpотpофичеcких фактоpов, котоpые cлужат защитой от апоптоза. Такие попытки ведутcя в pазличных лабоpатоpиях CША и Евpопы.

Больших уcпехов в изучении и пpактичеcком иcпользовании cтволовых клеток добилиcь и отечеcтвенные иccледователи. Cпециалиcты из Инcтитута акушеpcтва, гинекологии и пеpинатологии PАМН выделили pегиональные нейpальные cтволовые клетки и впеpвые получили их подpобную иммуногиcтохимичеcкую хаpактеpиcтику, в том чиcле на пpоточном флюоpиметpе. В опытах c пеpеcадкой cтволовых нейpальных клеток человека в мозг кpыc показана их пpиживляемоcть, мигpация на доcтаточно большие pаccтояния (неcколько миллиметpов) и cпоcобноcть к диффеpенциpовке, котоpая в значительной cтепени опpеделялаcь микpоокpужением тpанcплантата. Напpимеp, пpи пеpеcадке нейpальных клеток человека в облаcть мозжечка кpыcы, где pаcположены клетки Пуpкинье, они pазвиваютcя в напpавлении именно этого типа клеток. Об этом cвидетельcтвует cинтез в них белка калбиндина, cпецифичеcкого пpодукта клеток Пуpкинье.

Интеpеcную cовмеcтную pаботу пpовели cотpудники тpех академичеcких научных учpеждений – Инcтитута биологии гена, Инcтитута биологии pазвития и Инcтитута молекуляpной биологии. Пpи пеpеcадке куcочков эмбpиональной неpвной ткани дpозофилы в мозг кpыcы заметили, что вокpуг тpанcплантата не фоpмиpуетcя pубцовая ткань. Оcтавалоcь выяcнить, за cчет чего это пpоиcходит. Cпомощью доcтаточно тонких экcпеpиментов удалоcь уcтановить, что обpазованию pубца пpепятcтвуют белки теплового шока, котоpые cинтезиpуютcя в клетках дpозофилы пpи темпеpатуpе тела млекопитающих. Значит, добавление кcенотpанcплантата (ткани дpозофилы) к эмбpиональной неpвной ткани кpыcы cпаcает аллотpанcплантат от нашеcтвия pубцовой ткани. Так появилаcь возможноcть иcпользовать белки теплового шока в клеточной и генной теpапии pазличных заболеваний.

Подобные иccледования позволят cоздавать генно-инженеpные конcтpукции для тpанcфоpмации cтволовых клеток, пpедназначенных для пеpеcадки. Эти cтpуктуpы помогут лучшему пpиживлению тpанcплантата, повыcят его жизнеcпоcобноcть и cпециализацию cоcтавляющих его клеток.

Необходимо cpавнить и внимательно пpоанализиpовать pезультаты тpанcплантации cтволовых клеток в виде цельных или диccоцииpованных на клетки нейpоcфеp и pазpаботать cоответcтвующий пpотокол для клиничеcкого иcпользования.

Впpочем, нельзя не cказать о том, что из доcтаточно автоpитетных лабоpатоpий pаздаютcя веcьма cкептичеcкие отклики на такие pаботы и пpедупpеждения о необходимоcти оcтоpожно интеpпpетиpовать полученные данные. Пpиводятcя факты, cвидетельcтвующие, что cтволовые клетки не диффеpенциpуютcя поcле их тpанcплантации, а cливаютcя cо cпециализиpованными клетками хозяина, cоздавая видимоcть cобcтвенной диффеpенциpовки. Некотоpые автоpы cчитают, что cтpомальные клетки коcтного мозга cпоcобны пpевpащатьcя только в клетки хpяща и коcти, а пpи их инъекции pеципиенту оcедать там, откуда «пpишли», т.е. в коcтном мозгу, в cвязи c чем пеpcпективы их иcпользования в клеточной теpапии cтавятcя под cомнение. Очевидно, необходимы дополнительные cеpьезные иccледования для ответа на поcтавленные вопpоcы и выдвинутые возpажения.


Заключение

Один из первооткрывателей структуры ДНК, Джеймс Уотсон, комментируя открытие стволовых клеток, отметил, что устройство стволовой клетки уникально, поскольку под влиянием внешних инструкций она может превратиться в зародыш либо в линию специализированных соматических клеток.

Действительно, стволовые клетки – прародительницы всех без исключения типов клеток в организме. Они способны к самообновлению и, что самое главное, в процессе деления образуют специализированные клетки различных тканей. Таким образом, все клетки нашего организма возникают из стволовых клеток.

Стволовые клетки обновляют и замещают клетки, утраченные в результате каких-либо повреждений во всех органах и тканях. Они призваны восстанавливать и регенерировать организм человека с момента его рождения.

Потенциал стволовых клеток только начинает использоваться наукой. Ученые надеются в ближайшем будущем создавать из них ткани и целые органы, необходимые больным для трансплантации взамен донорских органов. Их преимущество в том, что их можно вырастить из клеток самого пациента, и они не будут вызывать отторжения.

Потребности медицины в таком материале практически неограниченны. Только 10–20 процентов людей вылечиваются благодаря удачной пересадке органа. 70–80 процентов пациентов погибают без лечения на листе ожидания операции.

Таким образом, стволовые клетки в каком-то смысле действительно могут стать «запчастями» для нашего организма. Но для этого вовсе не обязательно выращивать искусственные эмбрионы – стволовые клетки содержатся в организме любого взрослого человека.

Можно надеяться, что теперь для получения плюрипотентных клеток не придется использовать человеческие эмбрионы, что снимает многие этические проблемы, связанные с практическим применением эмбриональных стволовых клеток.

Cледующие 20 лет биология будет pаcшифpовывать, как план cтpоения оpганизма упаковываетcя в одну клетку. Cейчаc мы делаем пеpвые шаги, чтобы пеpеоcмыcлить наши биологичеcкие возможноcти и pезеpвы.

Уже cегодня cтволовые клетки уcпешно иcпользуютcя пpи лечении тяжелых наcледcтвенных и пpиобpетенных заболеваний, болезней cеpдца, эндокpинной cиcтемы, невpологичеcких заболеваний, болезнях печени, желудочно-кишечного тpакта и легких, заболеваний мочеполовой и опоpно-двигательной cиcтем, заболеваний кожи.


Список источников

1. Корочкин Л.И. Биология индивидуального развития: Учебн. Пособие – М., 2002. – 375 с.

2. Репин В.С. Эмбриональные стволовые клетки: фундаментальная биология и медицина / В.С. Репин, А.А. Ржанинова, Д.А. Шаменков. – М., 2002. – 247 с.

3. Репин В.С. Медицинская клеточная биология / В.С. Репин, Г.Т. Сухих – М., 1998. – 280 с.

4. Глик Б. Молекулярная биотехнология/ Б. Глик, Дж. Пастернак – М., 2001. – 255 с.

5. Белоконева О.В. Праматерь всех клеток // Наука и жизнь. – 2001. – №10. – с. 6–7

6. Гриневич В.Н. Нервные клетки восстанавливаются // Наука и жизнь. – 2004. – №4. – с. 22–25

Стволовая клетка – это незрелая клетка, способная к самообновлению и развитию в специализированные клетки организма. Миллиарды клеток растущего организма (человека или животного) происходят всего-навсего из одной клетки (зиготы), которая образуется в результате слияния мужской и женской гамет. Эта единственная клетка содержит не только информацию об организме, но и схему ее последовательного развития. В ходе эмбриогенеза оплодотворенная яйцеклетка делится и дает начало клеткам, не имеющим других функций, кроме передачи генетического материала в следующие клеточные поколения. Это эмбриональные стволовые клетки (ЭСК), геном которых находится в «нулевой точке»; механизмы, определяющие специализацию, еще не включены, из них потенциально могут развиться любые клетки.

Во взрослом организме стволовые клетки находятся, в основном, в костном мозге и, в очень небольших количествах, во всех органах и тканях. Они обеспечивают восстановление поврежденных участков органов и тканей. Стволовые клетки, получив от регулирующих систем сигналы о какой-либо "неполадке", по кровяному руслу устремляются к пораженному органу. Они могут восстановить практически любое повреждение, превращаясь на месте в необходимые организму клетки (костные, гладкомышечные, печеночные, сердечной мышцы или даже нервные) и стимулируя внутренние резервы организма к регенерации (восстановлению) органа или ткани.

Высокодифференцированные клетки (кардиомиоциты, нейроны) практически не делятся, в то время как менее дифференцированные клетки – фибробласты, гепатоциты частично сохраняют способность к размножению и при определенных условиях делятся и увеличивают свое число. Общей закономерностью является то, что если клетка вышла на этап дифференцировки, то количество делений, которое она может пройти, ограничено. Так, например, для фибробласта лимит делений составляет 50 делений, для стволовой клетки крови –100. Описанное явление имеет большое биологическое значение: в случае, если произошла поломка в геноме клетки, мутация будет растиражирована в ограниченном количестве и не сыграет большой роли для организма в целом.

Взрослого организма очень невелик. Поэтому случается так, что обновить утраченные клетки организм самостоятельно уже не в состоянии: или очаг поражения слишком велик, или организм ослаблен, или возраст уже не тот. Можно ли помочь больному излечиться от цирроза, инсульта, паралича, диабета, ряда заболеваний нервной системы? Уже сегодня ученые умеют направлять стволовые клетки "по нужному пути". Достижения в этой области клеточной медицины делают возможности терапевтического использования стволовых клеток практически безграничными.

Известно, что каждый человек произошел от папы и мамы, вернее, от соединения маминой яйцеклетки и папиного сперматозоида в процессе приятного времяпрепровождения. То есть происхождение всего того, что у нас есть – кожа, мышцы, волосяной покров, внутренние органы, мы обязаны двум клеткам, объединившимся в одну – зиготу.

В ходе эмбриогенеза зигота делится и дает начало клеткам, не имеющим других функций, кроме передачи генетического материала в следующие клеточные поколения. Это эмбриональные стволовые клетки. Геном этих недифференцированных клеток находится в «нулевой точке», механизмы, определяющие специализацию еще не включены. Это клетки-анонимы, клетки «без имени и отчества». Из них развиваются любые высокодифференцированные клетки организма (кардиомиоциты, нейроны и прочее).

После распределения между собой обязанностей, высокодифференциро-ванные клетки закрываются для дальнейшего редактирования и могут быть доступны только для «чтения», причем каждая – в определенном формате: нервная клетка – это только нервная клетка, неспособная участвовать в созда-нии эпителиальной ткани или входить в состав миокарда и т. п. Для клеток взрослого организма характерна кастовость: каждая группа выполняет свою работу и не мешает деятельности клеток другой группы. В то же время некоторым стволовым клеткам удается всё же ускользнуть от определенности и остаться доступными для дальнейшего редактирования только в случае крайней необходимости. В зависимости от нужд и стремлений они могут превратиться в любую высокодифференцированную клетку организма, то есть стволовые клетки – это универсальный строительный материал, из которого произрастает всё, «что угодно»: от нейронов головного мозга и кровяных телец до клеток тканей, выстилающих кишечник, и других внутренних органов.

Пока человеческому организму хорошо, стволовые клетки свободно и независимо «блуждают» по его просторам, бесконечно дуплицируясь под действием определенного гена. Они безработные. И как только стволовые клетки получают генетический сигнал на «бирже труда» (неполадка, повреждение ткани или органа), они по кровяному руслу устремляются к пораженному органу. Они могут найти практически любое повреждение, превращаясь на месте в необходимые организму клетки (костные, гладкомышечные, печеночные, нервные).

Человеческий организм содержит примерно 50 миллиардов стволовых кле-ток, которые регулярно обновляются. С годами количество таких живых «кир-пичиков» сокращается – для них находится всё больше работы, а заменить их некому. Угасать они начинают уже к 20 годам, а в 70 лет их остается совсем чуть-чуть. Более того, стволовые клетки немолодого индивидуума уже не так универсальны – в клетки крови они превратиться еще могут, а в нервные – уже не в силах. В связи с этим, к старости человек начинает напоминать высушенный плод.

Заменить ленивые, ветхие или больные клетки организма, чтобы продолжить активную жизнь, помогает искусственное внесение стволовых клеток в организм. Уже сегодня ученые могут получать стволовые клетки, культивировать и направлять их по «нужному пути». Достижения в области клеточной медицины делают возможности терапевтического использования стволовых кле-ток практически безграничными. Появилась реальная надежда на излечение огромного количества самых разнообразных заболеваний.

Какие же источники стволовых клеток используются в этих целях сегодня? «Спасение утопающих – дело рук самих утопающих», поэтому человек может стать донором стволовых клеток для себя самого. Наибольшее их количество находиться в костном мозге таза. Стромальные стволовые клетки извлекаются оттуда при помощи пункции. Затем, в лабораторных условиях особым образом их мобилизируют, наращивают и вводят обратно в организм, где при участии специальных сигнальных веществ, они направляются к «больному месту». Следует отметить, что даже из одной единственной стромальной клетки можно вырастить колонии. И уж совсем невероятная метаморфоза – стромальные стволо-вые клетки могут настолько «забыть» о своем костном мозговом происхождении, что под влиянием определенных факторов превращаются в нервные клетки (нейроны) или клетки сердечной мышцы.

Показано, что через 2 недели после добавления специального сигнального вещества в культуру стромальных клеток, они уже на 80 % состоят из нейронов. 90% стромальных клеток, введенных в зону инфаркта, полностью перерождаются в клетки сердечной мышцы, восстанавливая функции миокарда практически полностью. Однако стромальные клетки взрослого организма обладают ограниченной функциональностью, то есть их возможная тканевая специализация в той или иной степени лимитирована. Помимо этого все стволовые клетки взрослого человека каталогизированы и снабжены специальным штампиком: «моё». Так что донорство в этой области чревато возникновением противостояния, называемого «трансплантат против хозяина».
Вторым источником стволовых клеток является пуповинная кровь, собранная после рождения ребенка. Эта кровь очень богата стволовыми клетками. Взяв эту кровь из пуповины ребенка и поместив в криобанк (специальное хранилище), стволовые клетки в дальнейшем можно использовать для восстанов-ления практически любой ткани и органа этого индивидуума. Возможно также использовать эти стволовые клетки для лечения других пациентов при условии их совместимости по антигенам. Американские ученые получили стволовые клетки из человеческой плаценты (там, их количество в 10 раз больше, чем в пуповинной крови), которые способны преобразовываться в кожные, кровяные, мышечные и нервные клетки. Однако, создание хранилища для пуповинной крови и плацентарного материала – занятие дорогостоящее. В России таких криобанков практически нет.

Источником другого вида стволовых клеток – фетальных стволовых клеток, является абортивный материал 9–12 недели беременности. Этот источник на сегодняшний день используется наиболее часто. Но, помимо этических и юридических трений, фетальные клетки иногда могут вызвать отторжение трансплантата. Кроме того, использование непроверенного абортивного материала чревато заражением пациента вирусным гепатитом, СПИДом, цитомегаловирусом и т. д. Если же проводить диагностику материала на вирусы, увеличивается себестоимость метода, что, в конечном итоге, приводит к росту стоимости самого лечения.

Источником стволовых клеток может быть слизистая оболочка носоглотки. В ней преобладают частично специализировавшиеся стволовые клетки, способные превращаться в клетки нервной ткани – нейроны и клетки глии. Эти клетки пригодны для лечения заболеваний головного и спинного мозга. Однако, применяемость этих клеток для замены иных, чем нервные, требует дальнейших исследований. Помимо этого, выделение и хранение данного материала достаточно трудоемки.

Мезенхимальные стволовые клетки содержатся в жировой, хрящевой, мышечной тканях. В настоящее время весьма перспективным является выделение этих клеток из жировой ткани, полученной при липосакции.

И, наконец, еще одним источником стволовых клеток является бластоциста, которая формируется к 5–6 дню оплодотворения. Это эмбриональные стволовые клетки. Они наиболее универсальны, по сравнению со стволовыми клетками взрослых людей, и способны дифференцироваться абсолютно во все типы клеток организма. Положительной стороной использования этих универсальных стволовых клеток следует считать тот факт, что в них отсутствует штампик «моё»: клетки как бы никому не принадлежат и не выполняют никаких специальных функций, а потому при введении не возникает реакция отторжения. Даже, если эмбриональные стволовые клетки взяты от другого организма, они не отторгаются, поскольку на их поверхности еще нет антигенов гистосовместимости.

Эмбриональная стволовая клетка мягкая и податливая, как пластилин, и, в отличие от стволовых клеток взрослого человека, способна превращаться во «что угодно» без каких либо ограничений. Помимо этого у эмбриональной стволовой клетки есть уникальная система самоконтроля: она активно размно-жается, но как только произошла ошибка при делении, клетке дается команда на самоубийство. Так что угроза возникновения рака при использовании эмбриональных стволовых клеток маловероятна. Однако у данного источника стволовых клеток есть свои недостатки: во-первых, в России отсутствует коллекция стволовых клеток человека, во-вторых, использование эмбрионального материала негативно воспринимается религиозными и консервативными гражданами, потому что источником таких клеток являются медицинские аборты.

Противники эмбриональной клеточной терапии считают неэтичным использование абортированных зародышей, называя ее посягательством на чело-веческую жизнь, пусть даже это несформировавшаяся жизнь спасет кого-нибудь от неминуемой смерти. Оппоненты метода полагают, что использование человеческих эмбрионов для получения стволовых клеток способно подтолкнуть женщин к своего рода бизнесу – прерыванию беременности ради получения денег в обмен на эмбрион, тем более что трансплантация стволовых клеток считается сейчас одной из перспективнейших в медицинской отрасли.

Вышесказанное подтолкнуло ученых взяться за изучение стволовых клеток, полученных от 3-х недельного эмбриона черной овцы. Специалисты клиники «Medileen» опубликовали исследования, подтверждающие их плюрипотентность, т.е. способность образовывать клетки многих, но не всех типов. Стволовые клетки, выделенные из эмбриона черной овцы, при определенных условиях культивирования способны дифференцироваться сначала в нейральные клетки, а затем в астроциты. При трансплантации свежевыделенных клеток овцы больным с печеночной недостаточностью показано, что донорские клетки активно приживаются и дифференцируется в гепатоциты. Уровень репопуляции реципиентной печени при этом составил 81%. Активное функционирование этих клеток в данном случае отмечалось более года с устойчивым уровнем синтеза альбумина. Концентрация стволовых клеток в органахмишенях составляет при этом 60–87 %. Подобные исследования опровергают мнение ряда отечественных ученых о невозможности приживления данных эмбриональных стволовых клеток человеку.

Следует подчеркнуть, что упомянутые стволовые клетки получают от «чистой линии» животных: многие поколения данного вида выращены в лабораторных условиях, прошли серьезный контроль на отсутствие у них бактерио- и вирусоносительства, иммунных и наследственных болезней. Эти стволовые клетки лишены видоспецифичности (видовых антигенов) и не вызывают реакции иммунного отторжения. Качество трансплантата при использовании эмбриональных стволовых клеток овцы повышено за счет того, что они обогащены «сигнальными агентами» (так называемым фактором направления). В результате этого стволовые клетки способны связываться только с определенным видом поврежденных тканей, восстанавливая их функцию при повреждениях. Все вышеперечисленное позволяет говорить о еще одном перспективном направлении клеточной терапии в лечении тяжелых дегенеративных заболеваний.

Спасибо

Стволовые клетки в настоящее время представляют собой тему весьма оживленной дискуссии, ведущейся в обществе. Наверное, нет ни одного человека, который хотя бы не слышал термина "стволовые клетки". К сожалению, помимо знания этого термина, человек, как правило ничего не может сказать о том, что же такое стволовые клетки, каковы их свойства, как их получают и почему их можно использовать для лечения ряда заболеваний.

Данная ситуация сложилась потому, что подробной и емкой информации о предмете многочисленные телевизионные передачи, форумы и рекламы не предоставляют. Чаще всего информация о стволовых клетках представляется либо по типу рекламного ролика с восхвалением и возведением их в роль панацеи от всех заболеваний, либо же в передачах рассказывают о скандалах, которые, порой невероятными способами связываются все с теми же стволовыми клетками.

То есть, ситуация со стволовыми клетками подобна неким циркулирующим слухам о чем-то таинственном, но очень сильном, что может приносить огромное благо или не менее жуткое зло. Безусловно, это неправильно, и отражает только полное отсутствие объективной и комплексной информации у людей. Рассмотрим, что же такое стволовые клетки, зачем они нужны, как их получают, какими свойствами обладают и другие вопросы, так или иначе связанные с данными биологическими объектами.

Что такое стволовые клетки?

В общем виде можно сказать, что стволовые клетки – это структуры, обладающие способностью трансформироваться во взрослые и функционально активные клетки различных органов. Из стволовых клеток может вырасти и сформироваться и клетка печени (гепатоцит), и почки (нефроцит), и сердца (кардиомиоцит), и сосуда, и кости, и хряща, и матки , и яичника и т.д. То есть, по своей сути, стволовые клетки – это своеобразные резервные запасы, из которых по мере необходимости будут формироваться новые клетки различных органов взамен погибших или поврежденных.

Однако такое определение стволовых клеток очень общее, поскольку отражает только главную характерную черту данного типа клеток, помимо которой имеется множество других свойств, определяющих их разновидности. Чтобы ориентироваться в вопросе стволовых клеток и иметь о них относительно полное представление, необходимо знать эти их характерные свойства и разновидности.

Свойства и разновидности стволовых клеток

Основным свойством любой стволовой клетки является ее потентность, определяемая степенью дифференцировки и пролиферации. Рассмотрим, что означают данные термины.

Потентность

Потентность – это строго ограниченная способность стволовой клетки превращаться в определенные виды клеток различных органов. Чем большее количество видов клеток может образоваться из стволовой, тем выше ее потентность. Например, из фибробласта (стволовая клетка соединительной ткани) могут образовываться сосуды, жировые клетки, клетки кожи, хрящей, волос и ногтей, а из мезенхимальной стволовой клетки способны сформироваться кардиомиоциты, мышечные волокна и т.д. То есть, каждая стволовая клетка, на самом деле, имеет возможность превращаться только в ограниченный спектр клеток, которые обладают некоторыми общими свойствами и функциями. Например, мезенхимальная стволовая клетка не сможет превратиться в клетку кожи или волос.

В связи с такими ограничениями потентности выделены следующие виды стволовых клеток:

  • Тотипотентные – способны превращаться в клетки всех без исключения органов и тканей;
  • Полипотентные (мультипотентные) – способны превращаться в клетки нескольких видов органов или тканей, имеющих общее эмбриональное происхождение;
  • Монопотентные – способны превращаться только в разновидности клеток какого-либо одного органа.

Тотипотентные или эмбриональные стволовые клетки

Тотипотентностью обладают только стволовые клетки эмбриона человека вплоть до 8-ого деления. То есть, зигота (оплодотворенная яйцеклетка) и формирующийся из нее эмбрион вплоть до того момента, пока он не будет состоять из 256 клеток. Все клетки эмбриона, пока он достигнет размера 256 клеток, и зигота, по сути, являются стволовыми. В обычных условиях получить эмбриональные клетки, обладающие тотипотентностью, очень сложно, поскольку зигота начинает делиться еще в маточной трубе , а после трансплантации в матку она уже больше 256 клеток. То есть, когда женщина узнает о беременности , зародыш уже больше 256 клеток, и, следовательно, они не обладают тотипотентностью.

В настоящее время тотипотентные стволовые клетки получают только в лабораторных условиях, производя оплодотворение яйцеклетки сперматозоидом и выращивая эмбрион до нужного размера. Эмбриональные тотипотентные клетки используются в основном для экспериментов на животных и для выращивания искусственных органов.

Полипотентные стволовые клетки

Полипотентностью обладают стволовые клетки человеческого эмбриона, начиная с 8 деления и до 22 недели беременности. Каждая полипотентная стволовая клетка может превратиться только в несколько видов тканей или органов. Это связано с тем, что на стадии 256 клеток в человеческом эмбрионе начинают выделяться первичные органы и ткани. Именно эти первичные структуры в последующем дадут начало всем без исключения органам и тканям организма человека. Так, у эмбриона появляются мезенхимальные, нервные, кровяные и соединительно-тканные полипотентные стволовые клетки.

Мезенхимальные стволовые клетки

Из мезенхимальных стволовых клеток формируются внутренние органы, такие, как печень, селезенка, почки, сердце, легкие , желчный пузырь, поджелудочная железа , желудок и другие, а также скелетные мышцы. Это означает, что из одной и той же мезенхимальной стволовой клетки могут сформироваться и кардиомиоциты, и гепатоциты, и клетки желудка и т.д.

Нервные стволовые клетки

Из них, соответственно формируются все структуры нервной системы. Из полипотентной стволовой клетки крови образуются все без исключения кровяные форменные элементы, такие, как моноциты , лейкоциты , лимфоциты, тромбоциты и эритроциты . А из соединительно-тканной стволовой клетки формируются все сосуды, хрящи, кости, кожа, подкожная жировая клетчатка, связки и суставы.

Гемопоэтические стволовые клетки

Из них образуются абсолютно все клетки крови. Причем поскольку клетки крови живут довольно мало – от 90 до 120 дней, то они постоянно обновляются и заменяются в течение всей жизни человека. Замена умерших кровяных элементов происходит за счет постоянного формирования новых из гемопоэтических стволовых клеток, находящихся в костном мозгу . Такие гемопоэтические стволовые клетки сохраняются в течение всей жизни человека, а при нарушении их нормального развития у человека появляются заболевания крови, такие, как лейкоз , анемия , лимфомы и т.д.

В настоящее время полипотентные стволовые клетки используются в практической медицине довольно часто, как с целью лечения тяжелых заболевания (например, сахарного диабета , рассеянного склероза , болезни Альцгеймера и т.д.), так и омоложения. Получают полипотентные стволовые клетки из органов абортированных эмбрионов не старше 22 недели гестации. При этом стволовые клетки разделяют в зависимости от того органа, из которого они получены, например, печеночные, мозговые, кровяные и др. Наиболее часто используются клетки фетальной (эмбриональной) печени, поскольку они обладают наиболее универсальной потентностью, необходимой для лечения заболеваний различных органов, например, циррозов печени , инфаркта миокарда и т.д. Мультипотентные стволовые клетки, полученные из органов эмбрионов, также часто называют фетальными. Это название образовано от слова "фетус", которое в переводи с латинского означает плод, эмбрион.

Монопотентные стволовые клетки

После 22 недели гестации все стволовые клетки плода становятся монопотентными и закрепляются за органами и тканями. Монопотентность означает, что клетка может превратиться только в специализированные клетки того органа, в котором она находится. Например, стволовая клетка печени может превратиться только в клетки печеночных протоков или в клетки, образующие желчь, обезвреживающие токсины и т.д. Но весь ее спектр возможных превращений ограничивается только разновидностями клеток печени. Такая монопотентная клетка печени уже не сможет превратиться в клетку селезенки, сердца или любого другого органа в отличие от полипотентной. А закрепленность клеток означает, что они находятся только в этом органе и уже никогда не смогут перейти в другой.

Ребенок рождается уже именно с такими монопотентными стволовыми клетками, которые имеются в каждом органе и ткани без исключения, составляя своеобразный резерв. Из этого резерва в течение жизни образуются новые клетки каждого органа и ткани взамен поврежденных и умерших. В течение всей жизни такие стволовые клетки постепенно расходуются, но даже к моменту смерти человека от старости они еще имеются во всех органах и тканях.

Это означает, что теоретически из органов и тканей ребенка или взрослого человека можно получить только монопотентные стволовые клетки. Такие клетки обычно называют по органу, из которого они были получены, например, нервные, печеночные, желудочные, жировые, костные и т.д. Однако в костном мозгу даже взрослого человека имеется два вида полипотентных стволовых клеток – кровяная и мезенхимальная, которые в настоящее время достаточно просто получить рутинными лабораторными методиками. Для лечения различных заболеваний и омоложения чаще всего используются именно эти кровяные и мезенхимальные полипотентные стволовые клетки, полученные из костного мозга.

Пролиферация и дифференцировка стволовых клеток

Помимо перечисленного свойства потентности, каждая стволовая клетка характеризуется степенью дифференцировки и способностью к пролиферации. Рассмотрим, что означают термины пролиферация и дифференцировка.

Пролиферацией называется способность клетки делиться, то есть, размножаться. Дело в том, что каждая стволовая клетка в процессе превращения в специализированные клеточные структуры каких-либо органов и тканей проходит не только процесс созревания, но и несколько раз делится. Причем деление происходит на каждом очередном этапе созревания. То есть, из одной стволовой клетки получается от нескольких штук до нескольких сотен готовых зрелых клеток какого-либо органа или ткани.

Дифференциация – это степень узкой специализированности клетки, то есть, наличие у нее строго определенной функции, для выполнения которой они созданы. Например, узкоспециализированные клетки сердечной мышцы (кардиомиоциты) созданы только для выполнения сокращений, при помощи которых производится выталкивание крови и обеспечение ее циркуляции по организму. Соответственно, клетки, имеющие свои специализированные функции, называются высокодифференцированными. А относительно универсальные клетки, не имеющие специфических функций, являются низкодифференцированными. В норме в организме человека все клетки органов и тканей являются высокодифференцированными, а к низкодифференцированным относят только монопотентные стволовые клетки. Данные клетки не имеют специфических функций, и потому являются низкодифференцированными.

Процесс превращения стволовой клетки в специализированную, обладающую четкими и определенными функциями, называется дифференцировкой, в ходе которой она превращается из низкодифференцированной в высокодифференцированную. В процессе дифференцировки стволовая клетка проходит многочисленные этапы, на каждом из которых она делится. Соответственно, чем ниже дифференциация стволовой клетки, тем большее количество этапов ей придется пройти в процессе дифференцировки, и тем большее количество раз она будет делиться.

Исходя из этого можно сформулировать следующее простое правило: чем выше потентность клетки, то есть, чем ниже степень дифференцировки, тем сильнее ее способность к пролиферации. Значит, самые низкодифференцированные тотипотентные стволовые клетки обладают наибольшей способностью к пролиферации. И поэтому из одной тотипотентной стволовой клетки образуется несколько тысяч специализированные и высокодифференцированных клеток различных органов и тканей. А самые высокодифференцированные монопотентные стволовые клетки обладают минимальной способностью к пролиферации. Поэтому из одной монопотентой клетки образуется всего несколько высокодифференцированных клеток какого-либо органа или ткани.

Типы стволовых клеток различных органов

В настоящее время у взрослого человека или ребенка стволовые клетки получают из пуповинной крови или костного мозга. Также стволовые клетки для клинических и исследовательских нужд получают из абортивного материала плодов не более 23 недель гестации. Рассмотрим, какие типы стволовых клеток получают из указанных потенциальных источников.

Стволовые клетки мозга

Данный вид клеток получают из мозга абортированных плодов на сроках 18 – 22 недели беременности. Получить мозговые стволовые клетки у менее зрелых эмбрионов технически практически невозможно ввиду их очень маленького размера.

Стволовые клетки мозга относят к нервным полипотентным, то есть, из них могут сформироваться и образоваться любые клеточные структуры нервной системы любого органа или ткани. Например, из стволовых клеток мозга могут образоваться нейроны извилин, структуры спинного мозга, нервные волокна, чувствительные и двигательные рецепторы, проводящая система сердца и т.д. В общем любая нервная клетка в любой части тела человека может сформироваться из мозговой полипотентной стволовой клетки.

Данный вид клеток обычно используют для лечения нейродегенеративных заболеваний и травматических повреждений нервов, таких, как например инсульты, рассеянный склероз, болезнь Альцгеймера, размозжение тканей, парезы , параличи , ДЦП и т.д.

Стволовые клетки печени

Стволовые клетки печени получают из соответствующего органа плодов на сроках 18 – 22 недели беременности. Данный вид стволовых клеток также называется фетальным. Получить печеночные стволовые клетки у менее зрелых эмбрионов технически практически невозможно ввиду их очень маленького размера и отсутствия у них сформировавшейся печени.

Из печени плодов получают два вида полипотентных стволовых клеток – гемопоэтические и мезенхимальные. На первом этапе получают смесь обоих видов полипотентных стволовых клеток, а затем при необходимости их разделяют. Наибольшей ценностью обладают именно мезенхимальные фетальные клетки, поскольку из них можно вырастить полноценные и функционально активные клетки различных внутренних органов, таких, как легкие, сердце, печень, селезенка, почки, матка, мочевой пузырь , желудок и т.д. В настоящее время в пробирках успешно выращивают клетки практически всех органов, добавляя в питательную среду специальные вещества, заставляющие их дифференцироваться в заданном направлении. Например, для выращивания кардиомиоцита (клетка сердца) в питательную среду добавляют 5-азацитидин, а для получения всех остальных специализированных видов клеток органов – необходимы другие химические вещества. Причем для образования клетки каждого конкретного органа необходимо добавлять в питательные среды строго определенное соединение.

Фетальные печеночные стволовые клетки используются для лечения различных тяжелых, хронических заболеваний внутренних органов, таких, как циррозы, инфаркты, недержание мочи , туберкулез легких, сахарный диабет и т.д.

Стволовые клетки из пуповинной крови

Как понятно из названия, стволовые клетки данного вида получают из пуповинной крови новорожденного младенца . В этом случае также, как и из фетальной печени, получают два вида полипотентных стволовых клеток – гемопоэтические и мезенхимальные. Причем большая часть стволовых клеток, выделенных из пуповинной крови, является гемопоэтическими.

Гемопоэтические клетки могут превращаться в любые клеточные кровяные элементы (тромбоциты, лейкоциты, эритроциты, моноциты и лимфоциты) и способствовать росту сосудов. Небольшой процент гемопоэтических стволовых клеток может превращаться в клетки кровеносных и лимфатических сосудов.

В настоящее время стволовые клетки пуповинной крови чаще всего используются для омоложения или лечения различных тяжелых, хронических заболеваний. Кроме того, многие женщины принимают решение о сборе пуповинной крови и выделении стволовых клеток для дальнейшего хранения в криобанке, чтобы можно было воспользоваться готовым материалом при необходимости.

Наиболее часто применяемая классификация стволовых клеток

В зависимости от потентности выделяют следующие разновидности стволовых клеток:
  • Эмбриональные стволовые клетки (обладают тотипотентностью и получаются из искусственно оплодотворенных яйцеклеток, выращенных в пробирках до необходимого срока);
  • Фетальные стволовые клетки (обладают мультипотентностью и получаются из абортивного материала);
  • Взрослые стволовые клетки (обладают мультипотентностью и получаются из пуповинной крови или костного мозга взрослого человека или ребенка).
Полипотентные стволовые клетки в зависимости от вида их дифференцировки подразделяются на следующие разновидности:
  • Гемопоэтические стволовые клетки (являются предшественниками абсолютно всех клеток крови сосудов);
  • Мезенхимальные стволовые клетки (являются предшественниками всех клеток внутренних органов и скелетных мышц);
  • Соединительно-тканные стволовые клетки (являются предшественниками клеток кожи, костей, жира, хрящей, связок, суставов и сосудов);
  • Нейрогенные стволовые клетки (являются предшественниками абсолютно всех клеток, относящихся к нервной системе).

Получение стволовых клеток

Источниками для получения стволовых клеток являются следующие биологические субстраты:
  • Пуповинная кровь новорожденного младенца;
  • Костный мозг ребенка или взрослого человека;
  • Периферическая кровь (из вены) после специальной стимуляции;
  • Абортивный материал, полученный от женщин на 2 – 12 неделях беременности;
  • Плоды на сроках 18 – 22 недели беременности, которые умерли в результате преждевременных родов , позднего выкидыша или аборта по социальным показаниям;
  • Ткани недавно умерших здоровых людей (например, смерть наступила в результате травмы и т.д.);
  • Жировая ткань взрослого человека или ребенка;
  • Оплодотворение в пробирке яйцеклетки сперматозоидом с образованием зиготы.
Наиболее часто стволовые клетки получают из пуповинной крови, костного мозга или абортивного материала. Остальные способы получения стволовых клеток используются исключительно для исследовательских целей.

Получение стволовых клеток из пуповинной и периферической крови, а также костного мозга производится при помощи одних и тех же методов. Для их получения, во-первых, забирают костный мозг (от 20 до 200 мл) в ходе пункции подвздошной кости у взрослых людей или грудины у детей. Периферическую кровь забирают из вены так же, как для переливания . А пуповинную кровь просто собирают в стерильную пробирку прямо в родильном доме, подставив ее под перерезанную пуповину младенца.

Затем кровь или костный мозг транспортируют в лабораторию, где из них выделяют стволовые клетки одним из двух возможных методов. Чаще всего применяют разделение в градиенте плотности фиколл-урографина. Для этого в пробирку наливают слой фиколла, затем поверх него аккуратно наливают урографин так, чтобы растворы не перемешались. И наконец на поверхность урографина также аккуратно наслаивают кровь или костный мозг, стараясь, чтобы он минимально смешался с двумя предыдущими растворами. Затем пробирку откручивают в центрифуге на высокой скорости не менее 8 000 оборотов в минуту, в результате чего на границе раздела фаз фиколла и урографина уплотняется и концентрируется тонкое кольцо стволовых клеток. Это кольцо аккуратно собирают пипеткой в другую стерильную пробирку. Затем в нее наливают питательную среду и еще несколько раз откручивают на центрифуге, чтобы удалить все случайно попавшие в кольцо нестволовые клетки. Готовые стволовые клетки или помещают в питательную среду для дальнейшего выращивания (культивирования), или замораживают в жидком азоте для длительного хранения, или разбалтывают в физиологическом растворе и вводят в виде инъекции человеку, проходящему курс клеточной терапии.

Вторым, менее распространенным методом получения стволовых клеток является обработка крови или костного мозга лизирующим буфером. Лизирующий буфер – это специальный раствор со строго подобранными концентрациями солей, которые вызывают гибель всех клеток, кроме стволовых. Для выделения стволовых клеток кровь или костный мозг смешивают с лизирующим буфером и оставляют на 15 – 30 минут, после чего откручивают на центрифуге. Собравшийся на дне пробирки шарик и есть стволовые клетки. Всю жидкость, находящуюся над шариком клеток сливают, в пробирку заливают питательную среду и еще несколько раз откручивают на центрифуге, чтобы удалить все случайно попавшие ненужные клетки. Готовые стволовые клетки используют так же, как и полученные методом разделения на градиенте плотности фиколл-урографина.

Получение стволовых клеток из абортивного материала, тканей умерших людей или жира живых взрослых или детей является более трудоемкой процедурой, которую используют только хорошо оснащенные лаборатории или научные учреждения. В ходе выделения клеток производится обработка материала специальными ферментами, которые разрушают целостность тканей и превращают их в одну аморфную массу. Данную массу по частям обрабатывают лизирующим буфером и далее выделяют стволовые клетки так же, как и из крови или костного мозга.

Стволовые клетки из плодов 18 – 22 недель беременности получить так же просто, как и из крови или костного мозга. Дело в том, что стволовые клетки в данном случае получают не из всего плода, а только из печени, селезенки или головного мозга. Ткани органов измельчают механически, после чего разбалтывают в физиологическом растворе или питательной среде. Затем получают стволовые клетки либо при помощи лизирующего буфера, либо разделением на градиенте плотности фиколл-урографина.

Получение стволовых клеток методом оплодотворения яйцеклетки используется только в научных учреждениях. Этот метод доступен только высококвалифицированным ученым - клеточным биологам. Обычно таким образом получают эмбриональные стволовые клетки для экспериментальных исследований. А яйцеклетки и сперматозоиды забирают у здоровых женщин и мужчин, согласившихся стать донорами. За такое донорство научные учреждения выплачивают весьма ощутимое вознаграждение – не менее 3 – 4 тысяч долларов за порцию спермы мужчины и несколько яйцеклеток женщины, которые удастся забрать в ходе одной пункции яичника .

Выращивание стволовых клеток

Термин "выращивание" стволовых клеток не совсем правильный, однако его вполне можно использовать для обиходной речи. Ученые обычно для описания данной процедуры используют термин "культивирование стволовых клеток". Культивация или выращивание стволовых клеток – это процесс поддержания их жизни в специальных растворах, содержащих питательные вещества (питательных средах).

В ходе культивации количество стволовых клеток постепенно увеличивается, вследствие чего каждые 3 недели содержимое одного флакона с питательной средой разделяют на 2 или 3. Такая культивация стволовых клеток может производиться сколько угодно долго, если имеется необходимое оборудование и питательные среды. Однако на практике стволовые клетки не удается размножить до большого количества, поскольку очень часто происходит их заражение различными патогенными микробами, попавшими случайно в воздух лабораторного помещения. Такие зараженные стволовые клетки использовать и культивировать уже нельзя, и их просто выбрасывают.

Следует помнить, что выращивание стволовых клеток – это всего лишь увеличение их количества. Невозможно вырастить стволовые клетки из нестволовых.

Обычно стволовые клетки культивируют до тех пор, пока их число не окажется достаточным для выполнения лечебной инъекции или постановки эксперимента. Также клетки могут культивировать перед замораживанием в жидком азоте, чтобы запас был побольше.

Отдельно стоит сказать о специальной культивации стволовых клеток, когда в питательную среду добавляют различные соединения, которые способствуют дифференцировке в определенный тип клеток, например, кардиомиоциты или гепатоциты и т.д.

Использование стволовых клеток

В настоящее время использование стволовых клеток делится на три сферы – это экспериментальные исследования, лечение различных заболеваний и омоложение. Причем сфера экспериментальных исследований занимает не менее 90% общего пула использования стволовых клеток. В ходе экспериментов врачи-биологи изучают возможность перепрограммирования и расширения потентности клеток, способы их превращения в различные специализированные клетки различных органов, методы выращивания целых органов и т.д. В экспериментальной сфере использования стволовых клеток прогресс идет буквально семимильными шагами, поскольку каждый день ученые сообщают о новых достижениях. Так, уже были выращены нормально функционирующие сердце и печень из стволовых клеток. Правда эти органы не пробовали кому-либо пересаживать, но это произойдет уже в обозримом будущем. Соответственно, решится проблема донорских органов для людей, которым требуется трансплантация. Уже реальностью является использование клапанов сосудов и сердца, выращенных из стволовых клеток, для протезирования .

Использование стволовых клеток для лечения различных заболеваний проводится в рамках ограниченных клинических испытаний, когда больному предлагается данный вариант и объясняется, какие положительные моменты и риски это может повлечь. Обычно стволовые клетки применяют только для терапии тяжелых, хронических и неизлечимых другими методами заболеваний, когда шансов на выживание и хоть небольшое улучшение состояния практически нет. Благодаря таким клиническим испытаниям врачи получают возможность видеть, каковы эффекты стволовых клеток, и какие побочные действия может вызывать их использование. На основании результатов наблюдений разрабатываются наиболее безопасные и эффективные клинические протоколы, в которых прописываются рекомендованные дозировки стволовых клеток (общее вводимое количество в штуках), места и способы введения, а также оптимальные сроки терапии и ожидаемые эффекты.

С целью омоложения стволовые клетки могут вводить в подкожную клетчатку или в структуры кожи, а также внутривенно. Такое применения стволовых клеток позволяет уменьшить видимые признаки возрастных изменений на некоторый промежуток времени. Для поддержания длительного эффекта стволовые клетки придется вводить периодически через индивидуально подобранные интервалы. В принципе, данная манипуляция при правильном выполнении является безопасной.

Лечение стволовыми клетками различных заболеваний – общие принципы и эффекты

Для лечения различных заболеваний чаще всего используют стволовые клетки, полученные из костного мозга самого пациента. Для этого сначала в ходе пункции забирают необходимый объем костного мозга (от 20 мл до 200 мл), из которого в специализированной лаборатории выделяют стволовые клетки. Если их недостаточно, то производится культивирование до тех пор, пока клетки не размножатся до необходимого количества. Также поступают, если планируют сделать несколько введений стволовых клеток на курс лечения. Культивация позволяет получить необходимое количество стволовых клеток без повторных пункций костного мозга.

Кроме того, достаточно часто применяют стволовые клетки из костного мозга донора, в качестве которого обычно выступают кровные родственники. В таком случае для устранения риска отторжения перед введением клеток их культивируют на питательной среде минимум 21 день. Такая длительная культивация приводит к потере индивидуальных антигенов, и клетки уже не будут вызывать реакции отторжения.

Реже используют стволовые клетки печени, поскольку их необходимо покупать. Чаще всего данный вид клеток используют для омоложения.

Готовые стволовые клетки вводят в организм различными способами. Причем введение стволовых клеток называется трансплантацией, которая производится различными путями в зависимости от заболевания. Так, при болезни Альцгеймера стволовые клетки трансплантируют в спинномозговую жидкость при помощи люмбальной пункции. При заболеваниях внутренних органов клетки трансплантируются следующими основными способами:

  • Внутривенное введение стволовых клеток, разболтанных в стерильном физиологическом растворе;
  • Введение стволовых клеток в сосуды пораженного органа при помощи специального оборудования;
  • Введение стволовых клеток непосредственно в пораженный орган в ходе оперативного вмешательства;
  • Введение стволовых клеток внутримышечно в непосредственной близости от пораженного органа;
  • Введение стволовых клеток подкожно или внутрикожно.
Чаще всего клетки вводят внутривенно. Но в каждом конкретном случае метод выбирается врачом, исходя из общего состояния человека и желаемого эффекта.

Клеточная терапия (лечение стволовыми клетками) во всех случаях приводит к улучшению состояния человека, частично восстанавливает утраченные функции, повышает качество жизни, уменьшает скорость прогрессирования заболевания и развития осложнений.

Однако следует помнить, что лечение стволовыми клетками не является панацеей, оно не сможет исцелить полностью или отменить традиционной терапии. На современном этапе развития науки стволовые клетки могут использоваться только в качестве дополнения к традиционной терапии. Когда-нибудь, возможно, будут разработаны способы лечения только при помощи стволовых клеток, но сегодня это мечта. Поэтому принимая решение об использовании стволовых клеток, помните, что отменять всю остальную терапию тяжелого хронического заболевания нельзя. Трансплантация клеток только улучшит состояние и повысит эффективность традиционной терапии.

Лечение стволовыми клетками: основные проблемы - видео

Стволовые клетки: история открытия, виды, роль в организме, получение и особенности лечения - видео

Банк стволовых клеток

Банк стволовых клеток – это специализированная лаборатория, оснащенная оборудованием для их получения и длительного хранения в жидком азоте. В банках стволовых клеток можно хранить пуповинную кровь или собственные клетки, оставшиеся от какой-либо манипуляции. Каждый банк стволовых клеток имеет свои расценки на услуги, которые могут существенно отличаться. Однако рекомендуется выбирать такую организацию не по прайс-листу, а по профессионализму сотрудников и степени оснащенности оборудованием.

В настоящее время практически во всех крупных городах России имеются подобные банки, которые предлагают свои услуги физическим и юридическим лицам.

Перед применением необходимо проконсультироваться со специалистом.

Эмбриональные стволовые клетки (ЭСК) являются классическими стволовыми клетками, поскольку они способны к бесконечному самообновлению и имеют мультипотентный дифференцировочный потенциал. Их источником обычно являются первичные половые клетки, внутренняя клеточная масса бластоцисты или отдельные бластомеры зародышей 8-клеточной стадии, а также клетки морулы более поздних стадий.

Эмбриональным стволовым клеткам свойственна самая большая из всех категорий стволовых клеток теломеразная активность, которая обеспечивает им способность к беспрецедентному самообновлению (больше 230 клеточных удвоений в пробирке; тогда как дифференцированные клетки делятся примерно 50 раз в течение жизни).

В лабораторных условиях эти клетки способны дифференцироваться в различные типы как эмбриональных клеток, так и клеток взрослого организма. Они обладают нормальным кариотипом и в контролируемых условиях могут быть клонированы и многократно воспроизведены без изменения их свойств.

Исследования показали, что трансплантация ЭСК эффективна для лечения патологий, в основе которых лежит нарушение функций или гибель специализированных типов клеток. Так, болезнь Паркинсона, вызываемая прогрессивной дегенерацией и утратой дофамин-продуцирующих нейронов определенной зоны головного мозга, может успешно лечиться при помощи интрацеребральной инъекции эмбриональных нейронов. Также при сахарном диабете I типа (вызываемом нарушением работы островковых клеток поджелудочной железы) имплантация в печень островковых клеток поджелудочной железы приводит к нормализации уровня глюкозы. С помощью трансплантации ЭСК поддаются лечению и другие трудноизлечимые заболевания - например, мышечная дистрофия Дюшенна, дегенерация клеток Пуркинье. Трансплантация ЭСК эффективна и в случае травм - в частности, травм спинного мозга.

На первый взгляд, ЭСК наиболее подходят для использования в репаративной медицине. Однако хорошо известно, что при трансплантации в организм ЭСК способны порождать новообразования - тератомы. Поэтому перед применением ЭСК в клеточной терапии необходимо провести их дифференцировку в нужном направлении и убрать из популяции ЭСК клетки, потенциально способные привести к образованию тератом. Еще одна проблема, которую приходится преодолевать при использовании ЭСК - необходимость так или иначе обеспечить их гистосовместимость с организмом реципиента. Наконец, трудно оставить без внимания этическую сторону использования клеток эмбрионов человека для получения ЭСК.

Стволовые клетки взрослого организма

Стволовые клетки присутствуют во многих органах и тканях взрослых млекопитающих: в костном мозге, крови, скелетных мышцах, зубной пульпе, печени, коже, желудочно-кишечном тракте, поджелудочной железе. Большинство этих клеток слабо охарактеризованы. По сравнению с ЭСК, стволовые клетки взрослого организма имеют меньшую способность к самоподдержанию, и хотя они дифференцируются во множество клеточных линий, но не обладают мультипотентностью. Теломеразная активность и, соответственно, пролиферативный потенциал у стволовых клеток взрослого организма высоки, но все же ниже, чем у ЭСК.

Предполагается, что наименее дифференцированные стволовые клетки находятся в организме в состоянии покоя. В случае необходимости запускается необратимый процесс их поэтапного созревания в определенном направлении дифференцировки.

Стволовые кроветворные клетки

Из стволовых клеток взрослого организма наиболее хорошо охарактеризованы стволовые кроветворные клетки (СКК). Это клетки мезодермального происхождения. Они дают начало всем видам кроветворных и лимфоидных клеток. В норме кроветворение в организме, по-видимому, поддерживается в основном за счет постоянно сменяемого небольшого числа относительно короткоживущих клеточных клонов. In vitro стволовые кроветворные клетки при определенных условиях способны к самоподдержанию и могут быть простимулированы к дифференцировке в направлении тех же клеточных линий, что и in vivo.

Уже несколько десятков лет ткани костного мозга успешно применяют для лечения различных заболеваний крови (например, лейкозов), а также радиационных поражений организма, восстанавливая с их помощью нарушенные функции кроветворных и лимфоидных органов. Для этого обычно проводится трансплантация костного мозга; в последнее время используется и пуповинная кровь. Популяция СКК служит потенциальным источником для предшественников эндотелиальных клеток, что делает возможным применение СКК для лечения ишемической болезни и инфаркта миокарда.

Стволовые клетки нервной ткани

Еще одна категория клеток, которая в настоящее время интенсивно изучается, - это стволовые клетки нервной ткани (СКНТ). Эти клетки первоначально были найдены в субвентрикулярной зоне эмбрионального головного мозга. До недавнего времени считалось, что головной мозг взрослого организма не содержит стволовых клеток. Однако эксперименты на грызунах и приматах, а также клинические испытания с привлечением волонтеров показали, что СКНТ продолжают присутствовать и во взрослом головном мозге. In vitro стволовые клетки нервной ткани могут быть «нацелены» как на пролиферацию, так и на дифференцировку в различные типы нейронов и клетки глии (опорные и защитные клетки нервной ткани). Как эмбриональные СКНТ, так и СКНТ взрослого организма, трансплантированные в головной мозг, могут генерировать нейрональные и глиальные клетки. Хотя неизвестно, какова продолжительность самообновления стволовых клеток нервной ткани, в лабораторных условиях их можно культивировать в течение длительного периода.

Стромальные клетки-предшественники и мезенхимальные стволовые клетки

Стромальные клетки-предшественники и мезенхимальные стволовые клетки (МСК) были открыты около 30 лет назад. Это своего рода универсальные клетки, которые содержатся в костном мозге, в своеобразном депо, где они хранятся «про запас». Они способны к интенсивной пролиферации, могут дифференцироваться во многие клеточные типы и трансплантабельны in vivo. При необходимости они поступают в поврежденный орган или ткань и превращаются в нужные специализированные клетки.

In vitro численность мезенхимальных стволовых клеток может увеличиваться в 100000 раз в течение 6–8 недель, при этом они остаются в недифференцированном состоянии. Каждая колония стромальных клеток является клоном, то есть образуется путем пролиферации одной клетки, которая была названа колонеобразующей клеткой фибробластов (КОК-Ф). У животных и человека в физиологических условиях величина эффективности клонирования КОК-Ф колоний остается относительно стабильной и является важным параметром скелетного статуса, что указывает на роль КОК-Ф в патофизиологии дефектов кости и костного мозга.

Получено много данных о том, что в противоположность кроветворным стволовым клеткам костномозговые КОК-Ф представляют собой местную популяцию, то есть не мигрируют из одной части организма в другую и, соответственно, не приживаются при инфузии. Жаль, если эта проблема не найдет своего решения - ведь для лечения таких распространенных костных заболеваний, как остеопороз или незавершенный остеогенез, когда нельзя трансплантировать генетически измененные стромальные клетки во все области поражений, возможность их доставки через циркулирующую систему выглядит очень желательной. В целом же, вопрос о возможности миграции стромальных клеток, а также о факторах, благоприятствующих ей, остается открытым.

Стромальные клетки-предшественники выполняют также очень важную роль, обеспечивая специфическое микроокружение, необходимое для пролиферации и дифференцировки гемопоэтических и иммунокомпетентных клеток на территории кроветворных и лимфоидных органов. Таким образом, «корректировка» нарушений микроокружения в принципе может проводиться именно через эту категорию клеток.

Значительный интерес для клинического применения представляют мезенхимальные стволовые клетки, которые входят в состав популяции стромальных клеток-предшественников (или колонеобразующих клеток стромальных фибробластов - КОК-Ф) костного мозга. Их использование началось с успешного лечения несросшихся костных переломов размноженными в культурах аутологическими стромальными клетками костного мозга. До сих пор репарация костной и хрящевой ткани остается одной из наиболее важных областей применения МСК. С помощью трансплантации этих клеток удалось добиться успехов в лечении тяжелого контингента больных с ложными суставами, несросшимися переломами и хроническим остеомиелитом, остеоартритом. Принципы применяемых при этом биотехнологичеких методов являются универсальными и могут использоваться также для лечения больных с дефектами костной ткани различной локализации (травматология, ортопедия, нейрохирургия, черепно-лицевая хирургия, стоматология-имплантология).

Как возможные носители рекомбинантной ДНК, мезенхимальные стволовые клетки также представляют собой весьма привлекательный объект для генной инженерии, для лечения ряда дегенеративных и наследственных заболеваний.

Клетки костного мозга и МСК могут быть использованы и в терапии ишемической болезни сердца, поражений конечностей и головного мозга, а также для лечения инфарктов миокарда. Это еще одна область применения МСК, которая находится на стадии предклинических испытаний. В лабораторных исследованиях, проведенных на животных, и при лечении инфарктов миокарда у людей, костномозговые СК трансплантировались в область инфаркта либо прямой инъекцией, либо посредством их внутрисосудистого введения. В результате удалось достичь реального уменьшения зоны инфаркта. Однако прежде, чем терапия СК взрослого организма будет осуществляться в полном объеме, необходимо дополнительное проведение клинических испытаний и хорошо спланированных клинических исследований, которые позволят сделать окончательное заключение о безопасности и эффективности предложенного метода.

Особый интерес представляют первые данные, показывающие возможность использования костномозговых стромальных клеток при репарационных процессах в коже. В частности, исследования показывают, что после внутрикожного введения стромальных клеток костного мозга регенерация поврежденной кожной ткани шла более упорядоченно с меньшими нежелательными последствиями, к которым относится образование рубца.

Надо отметить, что для успеха лечения ключевым моментом остается и правильный выбор метода трансплантации СК. В ряде лабораторий сейчас работают также над улучшением способов очистки популяций СК и обогащения их ранними предшественниками, чтобы создать условия для более эффективной клеточной терапии. Согласно общему мнению, требуются также дальнейшие лабораторные исследования для изучения феномена пластичности стволовых клеток, а также многих других аспектов.

Как видим, со стволовыми клетками связано много надежд и ожиданий. Возможно, уже не за горами время, когда открытые свойства стволовых клеток и те, которые находятся сегодня для нас пока за семью печатями, создадут новые перспективы для лечения ряда серьезных заболеваний.

Чем уникальны стволовые клетки

В процессе развития эмбриона человека происходит ряд ключевых событий: за оплодотворением яйцеклетки следует т. н. дробление, суть которого сводится к быстрому накоплению тотипотентного (т. е. способного к созданию целого организма, повторению эмбриогенеза из одной клетки) клеточного материала.

Примерно после 12 клеточных делений этот процесс резко замедляется, и нарушается синхронность делений. Начинается транскрипция генома зародыша, то есть реализация наследственной информации. Это изменение, известное как переход к средней бластуле, по всей вероятности, отражает истощение определенного компонента материнского происхождения, который используется для связывания с вновь синтезируемой ДНК.

Транскрипция завершается тем, что в цитоплазме этих уникальных первичных клеток накапливается информация в форме матричных РНК, которая определяет дальнейшее внутриутробное развитие. Реализация информации осуществляется в конечном итоге путем миграции, специализации клеток и формирования основных зародышевых листков - эктодермы (источник клеток кожи, ЦНС и пр.), мезодермы (источник клеток мышц, костей, крови и пр.) и энтодермы (источник клеток желез, ЖКТ и пр.), что происходит в процессе т. н. гаструляции.

Начиная с этого момента, в каждой ткани сохраняются ограниченные количества неспециализированных клеток. Такие клетки называют стволовыми клетками или клетками-предшественниками, их основная функция - управление процессом создания организма в целом, перенос и реализация наследственных программ.

Стволовые клетки - это недифференцированные, незрелые клетки эмбриона, плода, новорожденного или взрослого организма, способные к самообновлению и дифференцировке в различные типы тканей и органов. В организме взрослого человека они исполняют роль «машин регенерации», их цель - поддержание морфофункционального постоянства ткани, они имеют меньший потенциал, чем в самом начале эмбриогенеза, но способны эффективно замещать поврежденные элементы специализированной ткани в необходимом объеме. Практически для каждого типа тканей существуют свои собственные клетки-предшественники (предифференцированные клетки). Истинные плюрипотентные (способные к дифференцировке в клетки разных тканей разных зародышевых листков) клетки в нормальных условиях в организме встречаются крайне редко, их выделение из взрослого организма в настоящий момент без применения методик клонирования не представляется возможным.

В процессе старения количество изначально заложенной регенерационной информации в клетках стремительно снижается, уменьшается количество самих стволовых клеток. Истощенная репарационная система становится малоэффективной - возникает ряд заболеваний, ассоциированных со старением: увядает кожа, снижается эластичность хрящей, плотность костей, повреждается эндотелий сосудов - ухудшается кровоснабжение, постепенно все ткани организма попадают в условия сниженного снабжения кислородом, ускоряются процессы замещения функционально активных тканей на неполноценные соединительные стромальные ткани. Воздействие ряда инфекций, реализация врожденных, наследственных и мультифакториальных заболеваний, хронические интоксикации (в том числе, алкогольные), травмы также приводят к подобным последствиям - организм оказывается неспособным справиться с нарастающим потоком проблем и постепенно погибает.

Успех трансплантации органов и тканей человека открыл новую эру в медицине - продемонстрирована принципиальная возможность замены дефектных тканей и органов пациента на донорские, здоровые. К сожалению, трансплантация органов остается малодоступной, сопровождается сложными оперативными вмешательствами и требует постоянной иммуносупрессии в большом объеме.

Ученые всего мира интенсивно работают над проблемой лабораторного получения клеток-предшественников с целью их последующей имплантации для замещения погибших тканей, что, по мнению медицинского научного сообщества, может послужить альтернативой трансплантации органов. В 1998 году американским ученым Джону Герхарту и Джеймсу Томпсону впервые в лабораторных условиях удалось получить и нарастить культуры эмбриональных стволовых клеток и половых прогениторных клеток, способных полностью повторить эмбриогенез. Таким образом, у человечества появилась реальная возможность в лабораторных условиях выращивать необходимое количество «запчастей» для организма и тем самым корригировать последствия ряда хронических и острых заболеваний. Дм. Шаменков, к.м.н.

Пластичность стволовых клеток

До недавнего времени считалось, что органоспецифические стволовые клетки могут дифференцироваться только в клетки соответствующих органов. Однако, по ряду данных, это не так: существуют органоспецифические стволовые клетки взрослых животных, которые способны к дифференцировке в клетки органов, отличных от органов происхождения стволовых клеток, даже если они онтогенетически принадлежат к разным зародышевым листкам. Это свойство стволовых клеток получило название пластичности. Так, существует много данных, что МСК костного мозга обладают широкой пластичностью и способны давать начало некоторым элементам нервной ткани, кардиомиоцитам, эпителиальным клеткам, гепатоцитам.

Альтернативная гипотеза феномена пластичности заключается в том, что мультипотентные стволовые клетки и после рождения присутствуют в различных органах и стимулируются к специфической пролиферации и дифференцировке в ответ на локальные факторы, представленные тем органом, в который рекрутированы стволовые клетки. Также есть предположение, что стволовые клетки рекрутируются в поврежденные органы и уже там реализуют свои свойства пластичности, т. е. дифференцируются в нужном для их восстановления направлении.

Вместе с тем нельзя не отметить, что ряд ученых подвергает сомнению саму концепцию пластичности стволовых клеток, указывая на то, что соответствующие эксперименты были выполнены на чистых популяциях тканевоспецифических стволовых клеток.

Словарь

Диплоидная клетка (от греч. diplуos - двойной и еidos - вид) - клетка с двумя гомологичными (подобными) наборами хромосом. Диплоидны все зиготы и, как правило, клетки большинства тканей животных и растений, кроме половых клеток.

Дифференцировочный потенциал - способность к превращению в разнообразные клетки организма.

Кариотип (от греч. kаryon - орех и typos - отпечаток, форма) - типичная для вида совокупность морфологических типов хромосом (форма, размер, детали строения, число и т. д.). Важная генетическая характеристика вида, лежащая в основе. Для определения кариотипа используют микрофотографию хромосом делящихся клеток.

Мезодерма - средний зародышевый листок у большинства многоклеточных животных и человека. Из него развиваются органы крово– и лимфообразования, органы выделения, половые органы, мышцы, хрящи, кости и др.

Мультипотентность - способность к дифференцировке в пределах одного зародышевого листка.

Плюрипотентность - способность к дифференцировке разных тканей разных зародышевых листков.

Полипотентность - способность генома стволовых клеток взрослого организма изменять профиль дифференцеровки при трансплантации в новую ткань реципиента.

Строма (от греч. stroma - подстилка) - основная опорная структура органов, тканей и клеток живых организмов и растений.

Стромальные клетки - клетки соединительнотканной опорной структуры органа.

Теломеры - специализированные ДНК-белковые структуры, которые находятся на концах линейных хромосом эукариот.

Теломеразная активность - активность теломеразы, фермента, который с помощью особого механизма синтезирует теломерную ДНК, и тем самым влияет на рост клеток. Высокая активность теломеразы свойственна половым и стволовым клеткам. Как только стволовые клетки начинают дифференцироваться, теломеразная активность падает, а их теломеры начинают укорачиваться.

Тератома (от греч. tеratos - урод) - доброкачественная опухоль, вызванная нарушением эмбрионального развития. Как правило, состоит из мышечной, нервной и др. тканей.

Тотипотентность - способность к созданию целого организма, повторению эмбриогенеза из одной клетки.

Фибробласты (от лат. fibra - волокно и blastуs - росток) - основная клеточная форма соединительной ткани животных и человека. Фибробласты образуют волокна и основное вещество этой ткани. При травме кожи они участвуют в закрытии ран и образовании рубцов.

Эктодерма - наружный зародышевый листок многоклеточных животных. Из эктодермы образуются кожный эпителий, нервная система, органы чувств, передний и задний отделы кишечника и т. д.

Энтодерма - внутренний зародышевый листок многоклеточных животных. Из энтодермы образуются эпителий кишечника и связанные с ним железы: поджелудочная железа, печень, легкие и т. д.