Слуховые рецепторы. Наружное ухо

Звук можно представить как колебательные движения упругих тел, распространяющиеся в различных средах в виде волн. Для восприятия звуковой сигнализации сформировался еще сложнее, чем вестибулярный, - рецепторный орган. Формировался он вместе с вестибулярным аппаратом, и поэтому в их строении есть немало подобных структур. Костный и перепончатый каналы в человека образуют 2,5 витка. Слуховая сенсорная система для человека - второй после зрения по значимости и объему информации, получаемой от внешней среды.

Рецепторы слухового анализатора относятся к вторинночутливих. Рецепторные волосковые клетки (у них сокращенный кіноцилій) образуют спиральный орган (кортіїв), что находится в завитці внутреннего уха, в ее завитковій проливе на основной мембране, длина которой - около 3,5 см. Она состоит из 20 000-30 000 волокон (рис. 159). Начиная от овального отверстия, длина волокон постепенно увеличивается (примерно в 12 раз), тогда как толщина их постепенно уменьшается (примерно в 100 раз).

Образование спирального органа завершает текторіальна мембрана (покровная перепонка), расположенная над волосковими клетками. На основной мембране располагаются рецепторные клетки двух типов: внутренние -в один ряд, а внешние - в 3-4. На их мембране, возвращенной в сторону покровной, у внутренних клеток находится 30 - 40 относительно коротких (4-5 мкм) волосков, а у внешних - 65 - 120 более тонких и более длинных. Между отдельными рецепторними клетками нет функциональной равенства. Об этом свидетельствует и морфологическая характеристика: сравнительно небольшая (около 3 500) количество внутренних клеток обеспечивает 90% аферентів кохлеарного (улиткового) нерва; в то время как от 12 000-20 000 внешних клеток отходит только 10 % нейронов. Кроме того, клетки базальной, и

Рис. 159. 1 - лестница пригінка; 2 - барабанные лестницы; С - основная перепонка; 4 - спиральный орган; 5 - средние лестница; 6 - сосудистая полоска; 7 -покровная перепонка; 8 - рейснерова перепонка

особенно средней, спирали и завитки имеют больше нервных окончаний, чем верхушечной спирали.

Пространство завиткової пролива заполнено эндолимфой. Над вестибулярной и основной мембранами в пространстве соответствующих каналов содержится перилімфа. Она сочетается не только с перилимфой вестибулярного канала, но и с субарахноидальным пространством мозга. Состав ее довольно подобный состав спинномозговой жидкости.

Механизм передачи звуковых колебаний

Прежде чем достичь внутреннего уха, звуковые колебания проходят через наружное и среднее. Наружное ухо служит преимущественно для улавливания звуковых колебаний, поддержания постоянства влажности и температуры барабанной перепонки (рис. 160).

За барабанной перепонкой начинается полость среднего уха, с другого конца закрыта перепонкой овального отверстия. Заполненная воздухом полость среднего уха соединяется с полостью носоглотки с помощью слуховой (евстахиевой) трубы, служит для выравнивания давления с обеих сторон барабанной перепонки.

Барабанная перепонка, воспринимая звуковые колебания, передает их на систему расположенных в среднем ухе лодыжек (молоточек, наковальня и стремечко). Косточки не только отправляют колебания на мембрану овального отверстия, но и усиливают колебания звуковой волны. Это происходит вследствие того, что сначала колебания передаются более длинному рычагу, образованном рукояткой молоточка и отростком коваделка. Этому же способствует и различие поверхностей стремінця (около 3,2 o МҐ6 м2) и барабанной перепонки (7 * 10"6). Последнее обстоятельство примерно в 22 раза (70:3,2) усиливает давление звуковой волны на барабанную пе

Рис. 160. : 1 - воздушная передача; 2 - механическая передача; 3 - жидкостная передача; 4 - электрическая передача

ретинку. Но при усилении колебания барабанной перепонки снижается амплитуда волны.

Указанные выше и последующие звукопередавальні структуры создают чрезвычайно высокую чувствительность слухового анализатора: звук воспринимается уже в случае давления на барабанную перепонку более 0,0001 мг1см2. К тому же мембрана завитки перемещается на расстояние, меньше диаметра атома водорода.

Роль мышц среднего уха.

Расположенные в полости среднего уха мышцы (m. tensor timpani и m. stapedius), воздействуя на натяжение барабанной перепонки и ограничивая амплитуду движения стремінця, участвуют в рефлекторной адаптации слухового органа к интенсивности звука.

Мощный звук может повлечь нежелательные последствия как для слухового аппарата (вплоть до повреждения барабанной перепонки и волосков рецепторных клеток, нарушения микроциркуляции в завитці), так и для ЦНС. Поэтому для предотвращения указанных последствий рефлекторно уменьшается натяжение барабанной перепонки. Вследствие этого, с одной стороны, снижается возможность ее травматического разрыва, а с другой, - уменьшается интенсивность колебания косточек и расположенных за ними структур внутреннего уха. Рефлекторную реакцию мышц наблюдают уже через 10 мс от начала действия мощного звука, что оказывается во время звука в 30-40 дБ. Этот рефлекс замыкается на уровне стволовых отделов мозга. В некоторых случаях воздушная волна бывает такой мощной и быстрой (например при взрыве), что защитный механизм не успевает сработать и возникают различные повреждения слуха.

Механизм восприятия звуковых колебаний рецепторними клетками внутреннего уха

Колебания мембраны овального окна сначала передается пери-лимфе вестибулярных лестницы, а затем через вестибулярную мембрану - ендолімфі (рис. 161). На вершине улитки между верхним и нижним перепончатыми каналами содержится соединительное отверстие - гелікотрема, через которое колебание передается перилимфе барабанных лестницы. В стенке, отделяющей среднее ухо от внутреннего, кроме овального, есть еще и круглое отверстие со своей мембраной.

Возникновение волны приводит к движению базилярной и покровной мембраны, после чего волоски рецепторных клеток, которые касаются покровной мембраны, деформируются, вызывая зарождение РП. Хотя волоски внутренних волосковых клеток касаются покровной мембраны, однако они также сгибаются под действием смещений эндолимфы в промежутке между ней и верхушками волосковых клеток.

Рис. 161.

С рецепторними клетками связаны аференти кохлеарного нерва, передача импульса на которые опосредуется медиатором. Главными сенсорными клетками органа Корти, обусловливающих генерирование ПД в слуховых нервах, являются внутренние волосковые клетки. Внешние волосковые клетки іннервовані холинергическим еферентними нервными волокнами. Эти клетки становятся более низкими в случае деполяризации и удлиняются в случае гіперполяризації. Они гіперполяризують под действием ацетилхолина, что выделяют эфферентные нервные волокна. Функция этих клеток заключается в увеличении амплитуды и обострении пиков вибрации базилярной мембраны.

Даже в тишине волокна слухового нерва проводят до 100 имп.1с (фоновая импульсация). Деформация волосков приводит к повышению проницаемости клеток к №+, вследствие чего в нервных волокнах, отходящих от этих рецепторов, частота импульсации возрастает.

Различение высоты тона

Основные характеристики звуковой волны - частота и амплитуда колебаний, а также время воздействия.

Ухо человека способно воспринимать звук в случае колебания воздуха в диапазоне от 16 до 20 000 Гц. Однако наибольшая чувствительность находится в пределах от 1000 до 4000 Гц, а это диапазон человеческого голоса. Именно здесь чувствительность слуха подобная к уровню броуновского шума - 2 * 10"5. В пределах участка слухового восприятия человек может испытывать около 300 000 различных по силе и высоте звуков.

Предполагают наличие двух механизмов различения высоты тонов. Звуковая волна представляет собой колебания молекул воздуха, распространяется в виде продольной волны давления. Передаваясь на перийендолімфу, эта волна, что бежит, между местом возникновения и затухания имеет участок, где колебания характеризуются максимальной амплитудой (рис. 162).

Месторасположение этого амплитудного максимума зависит от частоты колебания: в случае высоких частот он ближе к овальной мембране, а низших - к гелікотреми (проема перепонки). Как следствие амплитудный максимум для каждой слышимой частоты размещается в специфической точке эндолимфатического канала. Так, амплитудный максимум для частоты колебаний 4000 за 1 с находится на расстоянии 10 мм от овального отверстия, а 1000 за 1 с-23 мм. На верхушке (в гелікотреми) содержится амплитудный максимум для частоты 200 за 1 сек.

На указанных явлениях основывается так называемая пространственная (принцип места) теория кодирования высоты сприймального тона в самом рецеп

Рис. 162. а - распространение звуковой волны завиткою; б частотный максимум в зависимости от длины волны: И - 700 гЦ; 2 - 3 000 гЦ

тори. Амплитудный максимум начинает проявляться при частотах свыше 200 за 1 сек. Наивысшая чувствительность уха человека в диапазоне человеческого голоса (от 1000 до 4000 Гц) отображается и морфологическими особенностями соответствующего отдела завитки: в базальных и средних спиралях наблюдают наибольшую плотность афферентных нервных окончаний.

На уровне рецепторов только начинается различение звуковой информации, окончательное ее обработка происходит в нервных центрах. К тому же в диапазоне частот человеческого голоса на уровне нервных центров может оказаться суммация возбуждения нескольких нейронов, поскольку каждый из них в отдельности не способен надежно играть своими разрядами звуковые частоты свыше нескольких сотен герц.

Различение силы звука

более Интенсивные звуки ухо человека воспринимает как громче. Этот процесс начинается уже в самом рецепторе, что структурно составляет целостный орган. Основными клетками, где зарождается РП завитки, считают внутренние волосковые клетки. Внешние клетки, вероятно, немного усиливают это возбуждение, передавая свой РП внутренним.

В пределах наивысшей чувствительности различения силы звука (1000-4000 Гц) человек слышит звук, имеет ничтожно малую энергию (до 1 -12 ерг1с * см). В то же время чувствительность уха к звуковым колебаниям во втором диапазоне волн значительно ниже, и в пределах слышимости (ближе к 20 или 20 000 Гц) пороговая энергия звука должна быть не ниже чем 1 ерг1с - см2.

Слишком громкий звук может вызвать ощущение боли. Уровень громкости, когда человек начинает чувствовать боль, составляет 130-140 дБ над порогом слышимости. Если на ухо длительное время действует звук, особенно громкий, постепенно развивается явление адаптации. Снижение чувствительности достигается прежде всего благодаря сокращению мышцы-натяжителя и стремінцевого мышцы, которые изменяют интенсивность колебания косточек. Кроме того, до многих отделов обработки слуховой информации, в том числе и рецепторных клеток, подходят эфферентные нервы, которые могут изменять их чувствительность и тем самым участвовать в адаптации.

Центральные механизмы обработки звуковой информации

Волокна кохлеарного нерва (рис. 163) достигают кохлеарных ядер. После переключения на клетках кохлеарных ядер ПД поступают до следующего скопления ядер: оливарних комплексов, латеральной петли. Далее волокна направляются в нижних бугорков чотиригорбикового тела и медиальных коленчатых тел - главных релейных отделов слуховой системы таламуса. Потом заходят в таламус, и лишь післязвукові

Рис. 163. 1 - спиральный орган; 2 - переднее ядро завитки; 3 - заднее ядро завитки; 4 - олива; 5 - добавочное ядро; 6 - боковая петля; 7 - нижние бугорки чотиригорбикової пластинки; 8 - присереднє коленчатый тело; 9 - височная область коры

пути поступают к первичной звуковой коры полушарий большого мозга, расположенной в височной доле. Рядом с ней размещены нейроны, принадлежащие к вторичной слуховой зоны коры.

Информация, содержащаяся в звуковом стимуле, пройдя все указанные ядра переключения, многократно (по крайней мере не меньше чем 5 - б раз) "прописывается" в виде нейронного возбуждения. В таком случае на каждом этапе происходит ее соответствующий анализ, к тому же нередко с подключением сенсорных сигналов других, "неслухових", отделов ЦНС. В результате могут возникать рефлекторные ответы, характерные для соответствующего отдела ЦНС. Но распознавание звука, его осмысленное осознание происходят лишь в том случае, если импульсы достигают коры полушарий большого мозга.

Во время действия сложных звуков, что реально существующие в природе, в нервных центрах возникает своеобразная мозаика нейронов, которые возбуждаются одновременно, и происходит запоминание этой мозаичной карты, связанной с поступлением соответствующего звука.

Осознанное оценки различных свойств звука человеком возможно лишь в случае соответствующего предварительной тренировки. Наиболее полно и качественно эти процессы происходят только в корковых отделах. Корковые нейроны активируются не одинаково: одни - контр латеральным (противоположным) ухом, другие - іпсилатеральними стимулами, третьи - только при одновременной стимуляции обеих ушей. Возбуждаются они, как правило, целыми звуковыми группами. Повреждение этих отделов ЦНС затрудняет восприятие речи, пространственную локализацию источника звука.

Широкие связи слуховых участков ЦНС способствуют взаимодействия сенсорных систем и образованию различных рефлексов. Например, при возникновении резкого звука происходит бессознательный поворот головы и глаз в сторону его источника и перераспределение мышечного тонуса (стартовая позиция).

Слуховая ориентация в пространстве.

Довольно точная слуховая ориентация в пространстве возможна только в случае бінаурального слуха. В таком случае большое значение имеет то обстоятельство, что одно ухо находится дальше от источника звука. Учитывая то, что в воздушной среде звук распространяется со скоростью 330 м1с, 1 см он проходит за 30 мс, и малейшее отклонение источника звука от средней линии (даже меньше чем 3°) оба уха уже воспринимают с разницей во времени. То есть в этом случае имеет значение фактор разделения и по времени, и по интенсивности звука. Ушные раковины как рупоры способствуют концентруванню звуков, а также ограничивают поток звуковых сигналов с тыльной поверхности головы.

нельзя исключить участие формы ушной раковины в некоторой индивидуально обусловленной смене звуковых модуляций. Кроме того, ушная раковина и наружный слуховой ход, имея собственную резонансную частоту около 3 кГц, усиливают интенсивность звука для тонов, подобных к диапазону голоса человека.

Остроту слуха измеряют с помощью аудиометра, основывается на поступлении чистых тонов различной частоты через наушники и регистрации порога чувствительности. Снижение чувствительности (глухота) может быть связано с нарушением состояния передающих сред (начиная с наружного слухового хода и барабанной перепонки) или волосковых клеток и нейронных механизмов передачи и восприятия.

Слуховой анализатор воспринимает колебания воздуха и трансформирует механическую энергию этих колебаний в импульсы, которые в коре головного мозга воспринимаются как звуковые ощущения.

Воспринимающая часть слухового анализатора включает - наружное, среднее и внутреннее ухо (рис. 11.8.). Наружное ухо представлена ушной раковиной (звукоуловитель) и наружным слуховым проходом, длина которого составляет 21-27 мм, а диаметр 6-8 мм. Наружное и среднее ухо разделяет барабанная перепонка - мало податливая и слабо растягивающаяся мембрана.

Среднее ухо состоит из цепи соединенных между собой косточек: молоточек, наковальня и стремечко. Рукоятка молоточка прикрепляется к барабанной перепонке, основание стремечка - к овальному окну. Это своеобразный усилитель который в 20 раз усиливает колебания. В среднем ухе, кроме того, имеется две маленькие мышцы, прикрепляющиеся к косточкам. Сокращение этих мышц приводит к уменьшению колебаний. Давление в среднем ухе выравнивается за счет евстахиевой трубы, которая открывается в ротовую полость.

Внутреннее ухо соединено со средним при помощи овального окна, к которому прикрепляется стремечко. Во внутреннем ухе находится рецепторный аппарат двух анализаторов - воспринимающего и слухового (рис. 11.9.). Рецепторный аппарат слуха представлен улиткой . Улитка, длиной 35 мм и имеющая 2,5 завитка, состоит из костной и перепончатой части. Костная часть разделена двумя мембранами: основной и вестибулярной (рейснеровой) на три канала (верхний - вестибулярный, нижний - тимпанический, средний - барабанный). Средняя часть, называется улиточный ход (перепончатый). У верхушки - верхние и нижние каналы связаны геликотремой. Верхние и нижние каналы улитки заполнены перилимфой, средние - эндолимфой. Перилимфа по ионному составу напоминает плазму, эндолимфа - внутриклеточную жидкость (в 100 раз больше ионов К и в 10 раз ионов Nа).

Основная мембрана состоит из слабо натянутых эластических волокон, поэтому может колебаться. На основной мембране - в среднем канале расположены звуковоспринимающие рецепторы - кортиев орган (4 ряда волосковых клеток - 1 внутренний (3,5 тыс. клеток) и 3 наружных - 25-30 тыс. клеток). Сверху - тектореальная мембрана.

Механизмы проведения звуковых колебаний . Звуковые волны пройдя через наружный слуховой проход колеблют барабанную перепонку, последняя приводит в движение косточки и мембрану овального окна. Колеблется перилимфа и к вершине колебания затухают. Колебания перилимфы передаются на вестибулярную мембрану, а последняя начинает колебать эндолимфу и основную мембрану.

В улитке регистрируется: 1) Суммарный потенциал (между кортиевым органом и средним каналом - 150 мВ). Он не связан с проведением звуковых колебаний. Он обусловлен уравнем окислительно-восстановительных процессов. 2) Потенциал действия слухового нерва. В физиологии также известен и третий - микрофонный - эффект заключающий в следующем: если в улитку ввести электроды и соединить с микрофоном, предварительно усилив его, и произносить в ухо кошке различные слова, то микрофон воспроизводит эти же слова. Микрофонный эффект генерируется поверхностью волосковых клеток, т. к. деформация волосков приводит к появлению разности потенциалов. Однако, этот эффект превосходит энергию вызвавших его звуковых колебаний. Отсюда микрофонный потенциал - непростое преобразование механической энергии в электрическую, а связан с обменными процессами в волосковых клетках. Местом возникновения микрофонного потенциала является область корешков волосков волосковых клеток. Звуковые колебания, действующие на внутреннее ухо, накладывают возникающий микрофонный эффект на эндокохлеарный потенциал.


Суммарный потенциал отличается от микрофонного тем, что отражает не форму звуковой волны, а ее огибающую и возникает при действии на ухо высокочастотных звуков (рис. 11.10.).

Потенциал действия слухового нерва генерируется в результате электрического возбуждения, возникающего в волосковых клетках в виде микрофонного эффекта и суммарного потенциала.

Между волосковыми клетками и нервными окончаниями имеются синапсы, при этом имеет место и химический и электрический механизмы передачи.

Механизм передачи звука различной частоты. В течение длительного времени в физиологии господствовала резонаторная теория Гельмгольца : на основной мембране натянуты струны различной длины, подобно арфе они имеют разную частоту колебаний. При действии звука начинает колебаться та часть мембраны, которая настроена в резонанс данной частоте. Колебания натянутых нитей раздражают соответствующие рецепторы. Однако, эта теория критикуется, т. к. струны не натянуты и их колебания в каждый данный момент включают слишком много волокон мембраны.

Заслуживает внимания теория Бекеше . В улитке имеется явление резонанса, однако, резонирующим субстратом являются не волокна основной мембраны, а столб жидкости определенной длины. По данным Бекеше, чем больше частота звука, тем меньше длина колеблющегося столба жидкости. При действии звуков низкой частоты длина колеблющегося столба жидкости увеличивается, захватывая большую часть основной мембраны, причем колеблются не отдельные волокна, а значительная их часть. Каждой высоте тона соответствует определенное количество рецепторов.

В настоящее время наиболее распространенной теорией восприятия звука разной частоты является “теория места ”, согласно которой не исключается участие воспринимающих клеток в анализе слуховых сигналов. Предполагается что волосковые клетки, расположенные на различных участках основной мембраны обладают различной лабильностью, что оказывает влияние на звуковые восприятия, т. е. речь идет о настройке волосковых клеток на звуки разной частоты.

Повреждения в различных участках основной мембраны приводит к ослаблению электрических явлений, возникающих при раздражении звуков разной частоты.

Согласно резонансной теории, различные участки основной пластинки реагируют колебанием своих волокон на звуки разной высоты. Сила звука зависит от величины колебаний звуковых волн, которые воспринимаются барабанной перепонкой. Звук будет тем сильнее, чем больше величина колебаний звуковых волн и соответственно барабанной перепонки, Высота звука зависит от частоты колебаний звуковых волн, Большая частота колебаний в единицу времени будет. восприниматься органом слуха в виде более высоких тонов (тонкие, высокие звуки голоса) Меньшая частота колебаний звуковых волн воспринимается органом слуха в виде низких тонов (басистые, грубые звуки и голоса) .

Восприятие высоты, силы звука и локализации источника звука начинается с попадания звуковых волн в наружное ухо, где они приводят в движение барабанную перепонку. Колебания барабанной перепонки через систему слуховых косточек среднего уха передаются на мембрану овального окна, что вызывает колебание перилимфы вестибулярной (верхней) лестницы. Эти колебания через геликотрему передаются перилимфе барабанной (нижней) лестницы и доходят до круглого окна, смещая его мембрану по направлению к полости среднего уха. Колебания перилимфы передаются также на эндолимфу перепончатого (среднего) канала, что приводит в колебательные дви­жения основную мембрану, состоящую из отдельных волокон, натянутых, как струны рояля. При действии звука волокна мембраны приходят в колебательные движения вместе с рецепторны-ми клетками кортиева органа, расположенными на них. При этом волоски рецепторных клеток контактируют с текториальной мембраной, реснички волосковых клеток деформируются. Возникает вначале рецепторный потенциал, а затем потенциал действия (нервный импульс), который далее проводится по слуховому нерву и передается в другие отделы слухового анализатора.

Орган слуха состоит из трех отделов - наружного, среднего и внутреннего уха. Наружное и среднее ухо-это вспомогательные сенсорные структуры, обеспечивающие проведение звука к слуховым рецепторам в улитке (внутреннее ухо). Во внутреннем ухе содержатся два типа рецепторов - слуховые (в улитке) и вестибулярные (в структурах вестибулярного аппарата).

Ощущение звука возникает, когда волны сжатия, вызванные колебаниями молекул воздуха в продольном направлении, попадают на слуховые органы. Волны из чередующихся участков
сжатия (высокой плотности) и разрежения (низкой плотности) молекул воздуха распространяются от источника звука (например, камертона или струны) наподобие ряби на поверхности воды. Звук характеризуется двумя основными параметрами -силой и высотой.

Высота звука определяется его частотой, или числом волн за одну секунду. Частота измеряется в герцах (Гц). 1 Гц соответствует одному полному колебанию в секунду. Чем больше частота звука, тем выше этот звук. Человеческое ухо различает звуки в пределах от 20 до 20000 Гц. Наибольшая чувствительность уха приходится на диапазон 1000 - 4000 Гц.

Сила звука пропорциональна амплитуде колебаний звуковой волны и измеряется в логарифмических единицах - децибелах. Один децибел равен 10 lg I/ls, где ls - пороговая сила звука. За стандартную пороговую силу принимается 0,0002 дин/см2 - величина, весьма близкая к пределу слышимости у человека.

Наружное и среднее ухо

Ушная раковина служит как бы рупором, направляющим звук в слуховой канал. Для того чтобы попасть на барабанную перепонку, отделяющую наружное ухо от среднего, звуковые волны должны пройти через этот канал. Колебания барабанной перепонки передаются через заполненную воздухом полость среднего уха по цепи из трех маленьких слуховых косточек: молоточка, наковальни и стремечка. Молоточек соединяется с барабанной перепонкой, а стремечко - с перепонкой овального окна улитки внутреннего уха. Таким образом, колебания барабанной перепонки передаются через среднее ухо на овальное окно по цепи из молоточка, наковальни и стремечка.

Среднее ухо играет роль согласующего устройства, обеспечивающего передачу звука от среды низкой плотности (воздух) к более плотной (жидкость внутреннего уха). Энергия, требующаяся для сообщения какой-либо перепонке колебательных движений, зависит от плотности окружающей эту перепонку среды. Колебания в жидкости внутреннего уха требуют в 130 раз больших затрат энергии, чем в воздухе.

При передаче звуковых волн от барабанной перепонки к овальному окну по цепи слуховых косточек звуковое давление увеличивается в 30 раз. Это связано, прежде всего, с большой разницей в площади барабанной перепонки (0,55 см2) и овального окна (0,032 см2). Звук от большой барабанной перепонки передается по слуховым косточкам к маленькому овальному окну. В результате звуковое давление на единицу площади овального окна по сравнению с барабанной перепонкой возрастает.

Колебания слуховых косточек уменьшаются (гасятся) при сокращении двух мышц среднего уха: мышцы, напрягающей барабанную перепонку, и мышцы стремечка. Эти мышцы присоединяются соответственно к молоточку и стремечку. Их сокращение приводит к увеличению ригидности в цепи слуховых косточек и к уменьшению способности этих косточек проводить звуковые колебания в улитке. Громкий звук вызывает рефлекторное сокращение мышц среднего уха. Благодаря этому рефлексу слуховые рецепторы улитки предохраняются от повреждающего воздействия громких звуков.

Внутреннее ухо

Улитка образована тремя спиральными каналами, заполненными жидкостью, - вестибулярная лестница (лестница преддверия), средняя лестница и барабанная лестница. Вестибулярная и барабанная лестницы соединяются в области дистального конца улитки посредством отверстия -геликотремы, а средняя лестница расположена между ними. Средняя лестница отделена от вестибулярной лестницы тонкой рейснеровой мембраной, а от барабанной - основной (базилярной) мембраной.

Улитка заполнена двумя видами жидкости: в барабанной и вестибулярной лестницах содержится перилимфа, в средней лестнице - эндолим-фа. Состав этих жидкостей различен: в перилимфе много натрия, но мало калия, в эндолимфе мало натрия, но много калия. Из-за этих различий в ионном составе между эндолимфой средней лестницы и перилимфой барабанной и вестибулярной лестниц возникает эндокохлеарный потенциал величиной около +80 мВ. Поскольку потенциал покоя волосковых клеток равен примерно -80 мВ, между эндолимфой и рецепторными клетками создается разность потенциала в 160 мВ, что имеет большое значение для поддержания возбудимости волосковых клеток.

В области проксимального конца вестибулярной лестницы расположено овальное окно. При низкочастотных колебаниях перепонки овального окна в перилимфе вестибулярной лестницы возникают волны давления. Колебания жидкости, порожденные э тими волнами, передаются вдоль вестибулярной лестницы и затем через геликотрему в барабанную лестницу, на проксимальном конце которой находится круглое окно. В результате распространения волн давления в барабанную лестницу колебания перилимфы передаются на круглое окно. При движениях круглого окна, играющего роль демпфирующего устройства, энергия волн давления поглощается.

Кортиев орган

Слуховыми рецепторами являются волосковые клегки. Эти клетки связаны с основной мембраной; в улитке человека их около 20 тыс. С базальной поверхностью каждой волосковой клетки образуют синапсы окончания кохлеарного нерва, образуя вестибулокохлеарный нерв (VIII п.). Слуховой нерв образован волокнами кохлеарного нерва. Волосковые клегки, окончания кохлеарного нерва, покровная и основная мембраны образуют кортиев орган.

Возбуждение рецепторов

При распространении звуковых волн в улитке покровная мембрана смещается, и ее колебания приводят к возбуждению волосковые клетки. Это сопровождается изменением ионной проницаемости и деполяризацией. Возникающий при этом рецепторный потенциал возбуждает окончания кохлеарного нерва.

Различение высоты звука

Колебания основной мембраны зависят от высоты (частоты) звука. Эластичность этой мембраны постепенно возрастает по мере удаления от овального окна. У проксимального конца улитки (в области овального окна) основная мембрана уже (0,04 мм) и жестче, а ближе к геликотреме - шире и более эластична. Поэтому колебательные свойства основной мембраны постепенно изменяются по длине улитки: проксимальные участки более восприимчивы к звукам высокой частоты, а дистальные реагируют лишь на низкие звуки.

Согласно пространственной теории различения высоты звука, основная мембрана действует как анализатор частоты звуковых колебаний. От высоты звука зависит, какой участок основной мембраны будет отвечать на этот звук колебаниями наибольшей амплитуды. Чем звук ниже, тем больше и расстояние от овального окна до участка с максимальной амплитудой колебаний. Вследствие этого та частота, к которой наиболее чувствительна какая-либо волосковая клетка, определяется ее расположением клетки, реагирующие преимущественно на высокие тона, локализуются на узкой, туго натянутой основной мембране близ овального окна; рецепторы же, воспринимающие низкие звуки, расположены на более широких и менее туго натянутых дистальных участках основной мембраны.

Информация о высоте низких звуков кодируется также параметрами разрядов в волокнах кохлеарного нерва; согласно «залповой теории», частота нервных импульсов соответствует частоте звуковых колебаний. Частота потенциалов действия в волокнах кохлеарного нерва, реагирующих на звук ниже 2000 Гц, близка к частоте этих звуков; т.к. в волокне, возбуждающемся при действии тона в 200 Гц, возникает 200 импульсов в 1 с.

Центральные слуховые пути

Волокна кохлеарного нерва идут в составе вестибуло-кохлеарного нерва к продолговатому мозгу и заканчиваются в его кохлеарном ядре. От этого ядра импульсы передаются в слуховую кору по цепи вставочных нейронов слуховой системы, расположенных в продолговатом мозгу (кох-леарные ядра и ядра верхних олив), в среднем мозгу (нижнее двухолмие) и таламусе (медиальное коленчатое тело). «Конечный пункт назначения» слуховых каналов - это дорсолатеральный край височной доли, где расположена первичная слуховая область. Эту область в виде полосы окружает ассоциативная слуховая зона.

Слуховая кора отвечает за распознавание сложных звуков. Здесь соотносятся их частота и сила. В ассоциативной слуховой области интерпретируется смысл услышанных звуков. Нейроны нижележащих отделов-средней части оливы, нижнего двухолмия и медиального коленчатого тела осуществляют и (влечение и переработку информации о высаге и локализации звука.

Вестибулярная система

Лабиринт внутреннего уха, содержащий слуховые рецепторы и рецепторы равновесия, расположен в пределах височной кости и образован плоскостей. Степень смещения купулы и, следовательно, частота импульсации в вестибулярном нерве, иннервирующем волосковые клетки, зависит от величины ускорения.

Центральные вестибулярные пути

Волосковые клетки вестибулярного аппарата иннервируются волокнами вестибулярного нерва. Эти волокна идут в составе вестибулокохле-арного нерва к продолговатому мозгу, где и заканчиваются в вестибулярных ядрах. Отростки нейронов этих ядер идут к мозжечку, ретикулярной формации и спинному мозгу - двигательным центрам, управляющим положением тела при движениях благодаря информации от вестибулярного аппарата, проприорецепторов шеи и органов зрения.

Поступление вестибулярных сигналов к зрительным центрам имеет первостепенное значение для важного глазодвигательного рефлекса - нистагма. Благодаря нистагму взор при движениях головы фиксируется на неподвижном предмете. Во время вращения головы глаза медленно поворачиваются в обратную сторону, и поэтому взор фиксирован на определенной точке. Если угол вращения головы больше, чем тот, на который могут повернуться глаза, то они быстро перемещаются в направлении врашения и взор фиксируется на новой точке. Это быстрое движение и есть нистагм. При повороте головы глаза попеременно совершают медленные движения в направлении поворота и быстрые в противоположном настроении.

РОСЖЕЛДОР

Сибирский государственный университет

путей сообщения.

Кафедра: «Безопасность жизнедеятельности».

Дисциплина: «Физиология человека».

Курсовая работа.

Тема: «Физиология слуха».

Вариант № 9.

Выполнил: студент Проверил: доцент

гр. БТП-311 Рублев М. Г.

Осташев В. А.

Новосибирск 2006

Введение.

Наш мир наполнен звуками, самыми разнообразными.

всё это мы слышим, все эти звуки воспринимаются нашим ухом. В ухе звук превращается в «пулемётную очередь»

нервных импульсов, которые по слуховому нерву передаются в мозг.

Звук, или звуковая волна – это чередующиеся разряжения и сгущения воздуха, распространяющиеся во все стороны от колеблющегося тела. Такие колебания воздуха с частотой от 20 до 20000 в секунду мы слышим.

20000 колебаний в секунду – это самый высокий звук самого маленького инструмента в оркестре – флейты-пикколо, а 24 колебания – звук самой низкой струны – контрабаса.

О том, что звук «влетает в одно ухо, а вылетает в другое» - абсурд. Оба уха выполняют одну и ту же работу, но друг с другом не сообщаются.

Например: звон часов «влетел» в ухо. Ему предстоит мгновенное, но довольно сложное путешествие к рецепторам, то есть к тем клеткам, в которых при действии звуковых волн рождается звуковой сигнал. «Влетев» в ухо, звон ударится в барабанную перепонку.

Перепонка на конце слухового хода натянута сравнительно туго и закрывает проход наглухо. Звон, ударяя в барабанную перепонку, заставляет ее колебаться, вибрировать. Чем сильнее звук, тем сильнее колеблется перепонка.

Человеческое ухо – уникальный по чувствительности слуховой прибор.

Цели и задачи данной курсовой работы состоят в том, чтобы ознакомить человека с органами чувств – слухом.

Рассказать о строении, функциях уха, а также как сохранить слух, как бороться с заболеваниями органа слуха.

Также о разных вредных факторах на производстве, которые могут повредить слух, и о мерах защиты от таких факторов, так как различные заболевания органа слуха могут привести к более тяжелым последствиям – потере слуха и болезни всего организма человека.

I. Значение знаний по физиологии слуха для инженеров по технике безопасности.

Физиология – наука, изучающая функции целостного организма, отдельных систем и органов чувств. Одним из органов чувств является слух. Инженер по технике безопасности обязан знать физиологию слуха, так как на своем предприятии по долгу службы он соприкасается с профессиональным отбором лиц, определяя их годность к тому или иному виду труда, к той или иной профессии.

На основании данных о строении и функции верхних дыхательных путей и уха решается вопрос, в каком виде производства человек может работать, а в каком нет.

Рассмотрим примеры нескольких специальностей.

Хороший слух необходим лицам для контроля работы часовых механизмов, при испытании моторов и различной техники. Также хороший слух необходим врачам, водителям различного вида транспорта – наземного, железнодорожного, воздушного, водного.

Полностью зависит от состояния слуховой функции работа связистов. Радиотелеграфисты, обслуживающие приборы радиосвязи и гидроакустики, занимающиеся выслушиванием подводных звуков или шумоскопией.

Они должны обладать кроме слуховой чувствительности, еще и высоким восприятием разности частоты тона. Радиотелеграфисты должны иметь ритмический слух и память на ритм. Хорошей ритмической чувствительностью считается безошибочное различие всех сигналов или не более трех ошибок. Неудовлетворительной – если различено сигналов меньше половины.

При профессиональном отборе лётчиков, парашютистов, моряков, подводников очень важно определять барофункцию уха и околоносовых пазух.

Барофункция – это способность реагировать на колебания давления внешней среды. А также иметь бинауральный слух, то есть обладать пространственным слухом и определять положение источника звука в пространстве. Это свойство основано на наличии двух симметричных половин слухового анализатора.

Для плодотворной и безаварийной работы, согласно ПТЭ и ПТБ все лица вышеуказанных специальностей должны проходить медицинскую комиссию для определения трудоспособности на данном участке, а также для охраны труда и здоровья.

II . Анатомия органов слуха.

Органы слуха разделены на три отдела:

1. Наружное ухо. В наружном ухе располагаются наружный слуховой проход и ушная раковина с мышцами и связками.

2. Среднее ухо. В среднем ухе находится барабанная перепонка, сосцевидные придатки и слуховая труба.

3. Внутреннее ухо. Во внутреннем ухе находятся перепончатый лабиринт, располагающийся в костном лабиринте внутри пирамиды височной кости.

Наружное ухо.

Ушная раковина – эластичный хрящ сложной формы, покрытый кожей. Ее вогнутая поверхность обращена вперед, нижняя часть – долька ушной раковины – мочка, лишена хряща и заполнена жиром. На вогнутой поверхности расположен противозавиток, спереди от него углубление – раковина уха, на дне которого находится наружное слуховое отверстие ограниченное спереди козелком. Наружный слуховой проход состоит из хрящевого и костного отделов.

Барабанная перепонка отделяет наружное ухо от среднего. Она представляет собой пластинку, состоящую из двух слоев волокон. В наружном волокна расположены радиально, во внутреннем циркулярно.

В центре барабанной перепонки вдавление – пупок – место прикрепления к перепонке одной из слуховых косточек – молоточка. Барабанная перепонка вставлена в борозду барабанной части височной кости. В перепонке различают верхнюю(меньшую) свободную ненатянутую и нижнюю(большую) натянутую части. Перепонка расположена косо по отношению к оси слухового прохода.

Среднее ухо.

Барабанная полость – воздухоносная, расположена в основании пирамиды височной кости, слизистая оболочка выстлана однослойным плоским эпителием, который переходит в кубический или цилиндрический.

В полости находятся три слуховые косточки, сухожилия мышц, натягивающих барабанную перепонку и стремя. Здесь же проходит барабанная струна – ветвь промежуточного нерва. Барабанная полость переходит в слуховую трубу, которая открывается в носовой части глотки глоточным отверстием слуховой трубы.

Полость имеет шесть стенок:

1. Верхняя – покрышечная стенка отделяет барабанную полость от полости черепа.

2. Нижняя – яремная стенка отделяет барабанную полость от яремной вены.

3. Медианальная – лабиринтная стенка отделяет барабанную полость от костного лабиринта внутреннего уха. В ней имеются окно преддверия и окно улитки, ведущие в отделы костного лабиринта. Окно преддверия закрыто основанием стремени, окно улитки закрыто вторичной барабанной перепонкой. Над окном преддверия в полость выступает стенка лицевого нерва.

4. Литеральная – перепончатая стенка образована барабанной перепонкой и окружающими ее отделами височной кости.

5. Передняя – сонная стенка отделяет барабанную полость от канала внутренней сонной артерии, на ней открывается барабанное отверстие слуховой трубы.

6. В области задней сосцевидной стенки расположен вход в сосцевидную пещеру, ниже его имеется пирамидальное возвышение, внутри которого начинается стременная мышца.

Слуховые косточки – стремя, наковальня и молоточек.

Они названы так благодаря своей форме – самые мелкие в человеческом организме, составляют цепь, соединяющую барабанную перепонку с окном преддверия, ведущим во внутреннее ухо. Косточки передают звуковые колебания от барабанной перепонки окну преддверия. Рукоятка молоточка сращена с барабанной перепонкой. Головка молоточка и тело наковальни соединены между собой суставом и укреплены связками. Длинный отросток наковальни сочленяется с головкой стремечка, основание которого входит в окно преддверия, соединяясь с его краем посредством кольцевой связки стремени. Косточки покрыты слизистой оболочкой.

Сухожилие мышцы, напрягающей барабанную перепонку, прикрепляется к рукоятке молоточка, стременной мышцы - к стремени рядом с его головкой. Указанные мышцы регулируют движение косточек.

Слуховая труба (Евстахиева) длиной около 3.5 см. выполняет очень важную функцию – способствует выравниванию давления воздуха внутри барабанной полости по отношению к наружной среде.

Внутреннее ухо.

Внутреннее ухо расположено в височной кости. В костном лабиринте, изнутри выстланном надкостницей, залегает перепончатый лабиринт, повторяющий формы костного лабиринта. Между обоими лабиринтами имеется щель, заполненная перилимфой. Стенки костного лабиринта образованы компактной костной тканью. Он расположен между барабанной полостью и внутренним слуховым проходом и состоит из преддверия, трех полукружных каналов и улитки.

Костное преддверие – овальная полость, сообщающаяся с полукружными каналами, на ее стенке имеется окно преддверия, у начала улитки – окно улитки.

Три костных полукружных канала лежат в трех взаимно-перпендикулярных плоскостях. Каждый полукружный канал имеет по две ножки, одна из которых перед впадением в преддверие расширяется, образуя ампулу. Соседние ножки переднего и заднего каналов соединяются, образуя общую костную ножку, поэтому три канала открываются в преддверие пятью отверстиями. Костная улитка образует 2.5 завитка вокруг горизонтально лежащего стержня – веретена, вокруг которого наподобие винта закручена костная спиральная пластинка, пронизанная тонкими канальцами, где проходят волокна улитковой части преддверно-улиткового нерва. В основании пластинки расположен спиральный канал, в котором лежит спиральный узел – кортиев орган. Он состоит из множества натянутых, словно струны, волокон.

Тема 15. ФИЗИОЛОГИЯ СЛУХОВОЙ СИСТЕМЫ.

Слуховая система - одна из важнейших дистантных сенсорных систем человека в связи с возникновением у него речи как средства общения. Ее функция состоит в формировании слуховых ощущений человека в ответ на действие акустических (звуковых) сигналов, которые представляют собой колебания воздуха с разной частотой и силой. Человек слышит звуки, которые находятся в диапазоне от 20 до 20 000 Гц. Известно, что многие животные обладают значительно более широким диапазоном слышимых звуков. Например, дельфины «слышат» звуки частотой до 170 000 Гц. Но слуховая система человека предназначена преимущественно для того, чтобы слышать речь другого человека, и в этом отношении ее совершенство нельзя даже близко сравнивать со слуховыми системами других млекопитающих.

Слуховой анализатор человека состоит из

1) периферического отдела (наружного, среднего и внутреннего уха);

2) слухового нерва;

3) центральных отделов (кохлеарные ядра и ядра верхней оливы, задние бугры четверохолмия, внутреннее коленчатое тело, слуховая область коры головного мозга).

В наружном, среднем и внутреннем ухе происходят необходимые для слухового восприятия подготовительные процессы, смысл которых состоит в оптимизации параметров передаваемых звуковых колебаний при одновременном сохранении характера сигналов. Во внутреннем ухе происходит преобразование энергии звуковых волн в рецепторные потенциалы волосковых клеток .

Наружное ухо включает ушную раковину и наружный слуховой проход. Рельеф ушной раковины играет значительную роль в восприятии звуков. Если, например, этот рельеф уничтожить, залив воском, человек заметно хуже определяет направление источника звука. Наружный слуховой проход человека в среднем имеет длину около 9 см. Есть данные, что трубка такой длины и схожего диаметра имеет резонанс на частоте около 1 кГц, другими словами, звуки этой частоты немного усиливаются. Среднее ухо отделено от наружного барабанной перепонкой, которая имеет вид конуса с вершиной, обращенной в барабанную полость.

Рис. Слуховая сенсорная система

Среднее ухо заполнено воздухом. В нем находятся три косточки: молоточек, наковальня и стремечко , которые последовательно передают колебания барабанной перепонки во внутреннее ухо. Молоточек вплетен рукояткой в барабанную перепонку, другая его сторона соединена с наковальней, передающей колебания стремечку. Благодаря особенностям геометрии слуховых косточек стремечку передаются колебания барабанной перепонки уменьшенной амплитуды, но увеличенной силы. Кроме того, поверхность стремечка в 22 раза меньше барабанной перепонки, что во столько же раз усиливает его давление на мембрану овального окна. В результате этого даже слабые звуковые волны, действующие на барабанную перепонку, способны преодолеть сопротивление мембраны овального окна преддверия и привести к колебаниям жидкости в улитке. Благоприятные условия для колебаний барабанной перепонки создает также евстахиева труба , соединяющая среднее ухо с носоглоткой, что служит выравниванию давления в нем с атмосферным.

В стенке, отделяющей среднее ухо от внутреннего, кроме овального, есть еще круглое окно улитки, тоже закрытое мембраной. Колебания жидкости улитки, возникшие у овального окна преддверия и прошедшие по ходам улитки, достигают, не затухая, круглого окна улитки. В его отсутствие из-за несжимаемости жидкости колебания ее были бы невозможны.

В среднем ухе имеются также две маленькие мышцы - одна прикреплена к ручке молоточка, а другая - к стремечку. Сокращение этих мышц предотвращает слишком большие колебания косточек, вызванных громкими звуками. Это так называемый акустический рефлекс . Основной функцией акустического рефлекса является защита улитки от повреждающей стимуляции .

Внутреннее ухо . В пирамиде височной кости имеется сложной формы полость (костный лабиринт) , составными частями которой являются преддверие, улитка и полукружные каналы. Она включает два рецепторных аппарата: вестибулярный и слуховой. Слуховой частью лабиринта является улитка , которая представляет собой спираль из двух с половиной завитков, закрученных вокруг полого костного веретена. Внутри костного лабиринта как в футляре размещен перепончатый лабиринт, по форме соответствующий костному. Вестибулярный аппарат будет рассмотрен в следующей теме.

Опишем слуховой орган. Костный канал улитки разделен двумя мембранами - основной, или базилярной , и рейснеровой или вестибулярной - на три отдельных канала, или лестницы: барабанную, вестибулярную и среднюю (перепончатый улитковый канал) . Каналы внутреннего уха заполнены жидкостями, ионный состав которых в каждом канале специфичен. Средняя лестница заполнена эндолимфой с высоким содержанием ионов калия . Две другие лестницы заполнены перилимфой, состав которой не отличается от тканевой жидкости . Вестибулярная и барабанная лестницы на вершине улитки соединяются через небольшое отверстие - геликотрему, средняя лестница заканчивается слепо.

На базилярной мембране расположен кортиев орган , состоящий из нескольких рядов волосковых рецепторных клеток, поддерживаемых опорным эпителием. Около 3500 волосковых клеток образуют внутренний ряд (внутренние волосковые клетки ), а приблизительно 12-20 тысяч наружных волосковых клеток образуют три, а в области верхушки улитки пять продольных рядов. На обращенной внутрь средней лестницы поверхности волосковых клеток имеются покрытые плазматической мембраной чувствительные волоски - стереоцилии. Волоски соединены с цитоскелетом, их механическая деформация ведет к открытию ионных каналов мембраны и возникновению рецепторного потенциала волосковых клеток. Над кортиевым органом имеется желеобразная покровная (текториальная) мембрана , образованная гликопротеином и коллагеновыми волокнами и прикрепленная к внутренней стенке лабиринта. Верхушки стереоцилии наружных волосковых клеток погружены в вещество покровной пластинки.

Средняя лестница, заполненная эндолимфой, заряжена положительно (до +80 мВ) относительно двух других лестниц. Если учесть, что потенциал покоя отдельных волосковых клеток около - 80 мВ, то в целом разность потенциала (эндокохлеарный потенциал ) на участке средняя лестница - кортиев орган может составить около 160 мВ. Эндокохлеарный потенциал играет важную роль в возбуждении волосковых клеток. Предполагают, что волосковые клетки поляризованы этим потенциалом до критического уровня. В этих условиях минимальные механические воздействия могут вызвать возбуждение рецептора.

Нейрофизиологические процессы в кортиевом органе. Звуковая волна действует на барабанную перепонку, и далее через систему косточек звуковое давление передается на овальное окно и воздействует на перилимфу вестибулярной лестницы. Поскольку жидкость несжимаема, перемещение перилимфы может передаваться через геликотрему в барабанную лестницу, а оттуда через круглое окно - обратно в полость среднего уха. Перилимфа может перемещаться и более коротким путем: рейснерова мембрана изгибается, и через среднюю лестницу давление передается на основную мембрану, затем в барабанную лестницу и через круглое окно в полость среднего уха. Именно в последнем случае раздражаются слуховые рецепторы. Колебания основной мембраны приводят к смещению волосковых клеток относительно покровной мембраны. При деформации стереоцилий волосковых клеток в них возникает рецепторный потенциал, что приводит к выделению медиатора глутамата . Воздействуя на постсинаптическую мембрану афферентного окончания слухового нерва, медиатор вызывает генерацию в нем возбуждающего постсинаптического потенциала и далее генерацию распространяющихся в нервные центры импульсов.

Венгерский ученый Г. Бекеши (1951) предложил «теорию бегущей волны», позволяющую понять, как звуковая волна определенной частоты возбуждает волосковые клетки, находящиеся в определенном месте основной мембраны. Эта теория получила всеобщее признание. Основная мембрана расширяется от основания улитки к ее вершине примерно в 10 раз (у человека от 0,04 до 0,5 мм). Предполагается, что основная мембрана закреплена только по одному краю, остальная ее часть свободно скользит, что соответствует морфологическим данным. Теория Бекеши объясняет механизм анализа звуковой волны следующим образом: высокочастотные колебания проходят по мембране лишь короткое расстояние, а длинные волны распространяются далеко. Тогда начальная часть основной мембраны служит высокочастотным фильтром, а длинные волны проходят весь путь до геликотремы. Максимальные перемещения для разных частот происходят в разных точках основной мембраны: чем ниже тон, тем ближе его максимум к верхушке улитки. Таким образом, высота звука кодируется местом на основной мембране. Такая структурно-функциональная организация рецепторной поверхности основной мембраны. определяется как тонотопическая.

Рис. Тонотопическая схема улитки

Физиология путей и центров слуховой системы. Нейроны 1-го порядка (биполярные нейроны) находятся в спиральном ганглии, который расположен параллельно кортиеву органу и повторяет завитки улитки. Один отросток биполярного нейрона образует синапс на слуховом рецепторе, а другой направляется к головному мозгу, образуя слуховой нерв. Волокна слухового нерва выходят из внутреннего слухового прохода и достигают головного мозга в области так называемого мостомозжечкового угла или латерального угла ромбовидной ямки (это анатомическая граница между продолговатым мозгом и мостом).

Нейроны 2-го порядка образуют в продолговатом мозге комплекс слуховых ядер (вентральное и дорсальное ). В каждом из них имеется тонотопическая организация. Таким образом, частотная проекция кортиева органа в целом упорядоченно повторяется в слуховых ядрах. Аксоны нейронов слуховых ядер поднимаются в лежащие выше структуры слухового анализатора как ипси-, так и контралатерально.

Следующий уровень слуховой системы находится на уровне моста и представлен ядрами верхней оливы (медиальным и латеральным) и ядром трапециевидного тела. На этом уровне уже осуществляется бинауральный (от обоих ушей) анализ звуковых сигналов. Проекции слуховых путей на указанные ядра моста организованы также тонотопически. Большинство нейронов ядер верхней оливы возбуждаются бинаурально . Благодаря бинауральному слуху сенсорная система человека определяет источники звука, находящиеся в стороне от средней линии, поскольку звуковые волны раньше действуют на ближнее к этому источнику ухо. Обнаружены две категории бинауральных нейронов. Одни возбуждаются звуковыми сигналами от обоих ушей (ВВ-тип), другие возбуждаются от одного уха, но тормозятся от другого (ВТ-тип). Существование таких нейронов обеспечивает сравнительный анализ звуковых сигналов, возникающих с левой или правой от человека стороны, что необходимо для его пространственной ориентации. Некоторые нейроны ядер верхней оливы максимально активны при расхождении времени поступления сигналов от правого и левого уха, другие нейроны наиболее сильно реагируют на различную интенсивность сигналов.

Ядро трапециевидного тела получает преимущественно контралатеральную проекцию от комплекса слуховых ядер, и в соответствии с этим нейроны реагируют преимущественно на звуковую стимуляцию контралатерального уха. В этом ядре также обнаруживается тонотопия.

Аксоны клеток слуховых ядер моста идут в составе латеральной петли. Основная часть его волокон (в основном от оливы) переключается в нижнем двухолмии, другая часть идет в таламус и заканчивается на нейронах внутреннего (медиального) коленчатого тела, а также в верхнем двухолмии.

Нижнее двухолмие , расположенное на дорсальной поверхности среднего мозга, является важнейшим центром анализа звуковых сигналов. На этом уровне, по-видимому, заканчивается анализ звуковых сигналов, необходимых для ориентировочных реакций на звук. Аксоны клеток заднего холма направляются в составе его ручки к медиальному коленчатому телу. Однако часть аксонов идет к противоположному холму, образуя интеркаликулярную комиссуру.

Медиальное коленчатое тело , относящееся к таламусу, является последним переключательным ядром слуховой системы на пути к коре. Его нейроны расположены тонотопически и образуют проекцию в слуховую кору. Некоторые нейроны медиального коленчатого тела активируются в ответ на возникновение либо на окончание сигнала, другие реагируют только на частотные или амплитудные его модуляции. Во внутреннем коленчатом теле имеются нейроны, способные постепенно увеличивать активность при неоднократном повторении одного и того же сигнала.

Слуховая кора представляет высший центр слуховой системы и располагается в височной доле. У человека в ее состав входят поля 41, 42 и частично 43. В каждой из зон имеет место тонотопия, т. е полное представительство рецепторного аппарата кортиева органа. Пространственное представительство частот, в слуховых зонах сочетается с колончатой организацией слуховой коры, особенно выраженной в первичной слуховой коре (поле 41). В первичной слуховой коре кортикальные колонки расположены тонотопически для раздельной переработки информации о звуках различной частоты слухового диапазона. Они также содержат нейроны, которые избирательно реагируют на звуки различной продолжительности, на повторяющиеся звуки, на шумы с широким частотным диапазоном и т. п. В слуховой коре происходит объединение информации о высоте тона и его интенсивности, о временных интервалах между отдельными звуками.

Вслед за этапом регистрации и объединения элементарных признаков звукового раздражителя, который осуществляют простые нейроны , в переработку информации включаются комплексные нейроны , избирательно реагирующие только на узкий диапазон частотных или амплитудных модуляций звука. Подобная специализация нейронов позволяет слуховой системе создавать целостные слуховые образы, с характерными только для них сочетаниями элементарных компонентов слухового раздражителя. Такие сочетания могут быть зафиксированы энграммами памяти, что в дальнейшем позволяет сравнивать новые акустические стимулы с прежними. Некоторые комплексные нейроны слуховой коры возбуждаются сильнее всего в ответ на действие звуков человеческой речи.

Частотно-пороговые характеристики нейронов слуховой системы . Как было описано выше, все уровни слуховой системы млекопитающих имеют тонотопический принцип организации. Другая важная характеристика нейронов слуховой системы - способность избирательно реагировать на определенную высоту звука.

У всех животных имеется соответствие между частотным диапазоном издаваемых звуков и аудиограммой, которая характеризует слышимые звуки. Частотную избирательность нейронов слуховой системы описывают частотно-пороговой кривой (ЧПК), отражающей зависимость порога реакции нейрона от частоты тонального стимула. Частота, при которой порог возбуждения данного нейрона минимальный, называется характеристической частотой. ЧПК волокон слухового нерва имеет V-образную форму с одним минимумом, который соответствует характеристической частоте данного нейрона. ЧПК слухового нерва имеет заметно более острую настройку по сравнению с амплитудно-частотными кривыми основной мембран). Предполагают, что в обострении частотно-пороговой кривой участвуют эфферентные влияния уже на уровне слуховых рецепторов (волосковые рецепторы являются вторично-чувствующими и получают эфферентные волокна).

Кодирование интенсивности звука. Сила звука кодируется частотой импульсации и числом возбужденных нейронов. Поэтому считают, что плотность потока импульсации является нейрофизиологическим коррелятом громкости. Увеличение числа возбужденных нейронов при действии все более громких звуков обусловлено тем, что нейроны слуховой системы отличаются друг от друга по порогам реакций. При слабом стимуле в реакцию вовлекается лишь небольшое число наиболее чувствительных нейронов, а при усилении звука в реакцию вовлекается все большее число дополнительных нейронов с более высокими порогами реакций. Кроме того, пороги возбуждения внутренних и наружных рецепторных клеток неодинаковы: возбуждение внутренних волосковых клеток возникает при большей силе звука, поэтому в зависимости от его интенсивности меняется соотношение числа возбужденных внутренних и наружных волосковых клеток.

В центральных отделах слуховой системы обнаружены нейроны, обладающие определенной избирательностью к интенсивности звука, т.е. реагирующие на довольно узкий диапазон интенсивности звука. Нейроны с такой реакцией впервые появляются на уровне слуховых ядер. На более высоких уровнях слуховой системы их количество возрастает. Диапазон выделяемых ими интенсивностей суживается, достигая минимальных значений у нейронов коры. Предполагают, что такая специализация нейронов отражает последовательный анализ интенсивности звука в слуховой системе.

Субъективно воспринимаемая громкость звучания зависит не только от уровня звукового давления, но и от частоты звукового стимула. Чувствительность слуховой системы максимальна для раздражителей с частотами от 500 до 4000 Гц, при других частотах она снижается.

Бинауральный слух . Человек и животные обладают пространственным слухом, т. е. способностью определять положение источника звука в пространстве . Это свойство основано на наличии бинаурального слуха , или слушания двумя ушами. Острота бинаурального слуха у человека очень высока: положение источника звука определяется с точностью до 1 углового градуса. Основой этого служит способность нейронов слуховой системы оценивать интерауральные (межушные) различия времени прихода звука на правое и левое ухо и интенсивности звука на каждом ухе. Если источник звука находится в стороне от средней линии головы, звуковая волна приходит на одно ухо несколько раньше и имеет большую силу, чем на другом ухе. Оценка удаленности источника звука от организма связана с ослаблением звука и изменением его тембра.

При раздельной стимуляции правого и левого уха через наушники задержка между звуками уже в 11 мкс или различие в интенсивности двух звуков на 1 дБ приводят к кажущемуся сдвигу локализации источника звука от средней линии в сторону более раннего или более сильного звука. В слуховых центрах есть нейроны с острой настройкой на определенный диапазон интерауральных различий по времени и интенсивности. Найдены также клетки, реагирующие лишь на определенное направление движения источника звука в пространстве.