Наследственный характер долгожительства подтверждается методом. Ученые прочитали геном самых старых людей планеты. Цель нашей жизни – благополучие нашей микрофлоры

Голландские ученые обнаружили набор генов, которые отвечают за долголетие, и выяснили, что долгожители имеют ряд физиологических отличий.

Ранее ученые сообщали о том, что им удалось найти участок ДНК, который "обеспечивает" долголетие, даже если человек ведет нездоровый образ жизни.

Счастливые обладатели так называемого "гена Мафусаила" , по мнению специалистов, были застрахованы от последствий курения и других вредных привычек на несколько десятилетий.

Однако последние исследования показали, что одного гена в "борьбе" за долголетие не достаточно.

Для того чтобы хотя бы немного приблизиться к возрасту библейского пророка Мафусаила, дожившего до 969 лет, необходим определенный набор генов.

Правда, такая комбинация генов встречается крайне редко: только один человек из 10 тысяч достигает ста лет.

"У долгожителей не меньше генов, запускающих механизмы старения или болезни , - говорит Элин Слэгбум (Eline Slagboom) из Университета Лейдена (Leiden University), возглавляющая группу ученых, проводивших данное исследование и изучивших 3 500 тысячи голландских долгожителей. - Однако у них есть и другие гены, которые препятствуют работе генов из первой группы. Безусловно, долгожительство является генетическим и наследственным явлением" .

В ранних работах Слэгбум и ее коллег говорилось о том, что долгожители и их родственники отличаются от "обычных" людей по ряду физиологический параметров.

Так, например, "возрастные рекордсмены" иначе усваивают жиры и глюкозу, их кожа стареет гораздо медленнее, также они в меньшей степени предрасположены к сердечно-сосудистым заболеваниям и диабету.

"Все эти признаки находятся под строгим генетическим контролем, таким образом, с большой вероятностью можно ожидать, что дети и внуки долгожителей могут унаследовать их"
, - говорит Слэгбум.

По мнению ученых, "ген Мафусаила" включает в себя особый ген ADIPOQ, среди молодых людей в число его обладателей вошли всего 10%, а вот среди пожилых людей он был выявлен в 30% случаев.

Еще два гена (CETP, ApoC3) были найдены у 20% долгожителей, на долю молодых людей пришлось в два раза меньше - 10%.

Некоторые из этих генов были обнаружены группой исследователей из Медицинского Колледжа имени Альберта Эйнштейна в Нью-Йорке (Albert Einstein College of Medicine) под руководством профессора Нира Барзилэя (Nir Barzilai).

Ученые проанализировали геном около 500 долгожителей и их детей.

Открытие этих генов, по мнению самого Барзилэя, дает мощную платформу для разработки лекарств, которые помогут предотвратить многие возрастные болезни, удлиняя тем самым жизнь людей.

"Если мы определим точный набор генов, отвечающих за долголетие, то затем сможем узнать, какие белки нам необходимо применять в качестве терапии. Это позволит нам замедлить старение. Мы должны рассматривать процесс старения как болезнь, а не как естественный" , - говорит доктор Дэвид Джемс (David Gems) из Университетского Колледжа Лондона (University College London).

Создание "эликсира молодости" , по мнению специалистов, станет настоящим "хитом" фармацевтической промышленности, позволив взглянуть на проблему старения совсем с другой стороны.

Американский ученый А. Лиф обследовал горные районы Абхазии и горные районы в Андах (Эквадор) и пришел к выводу, что условия жизни людей в этил районах очень схожи, а долголетие здесь можно отнести за счет наследственности и отсутствия у некоторых жителей так называемых «вредных генов», увеличивающих опасность заболеваний. В маленьких замкнутых сообществах, подобных изолированным горным селам, некоторые жители, у которых отсутствовали эти гены стали родоначальниками отдельных кланов долгожителей. Становится очевидным, что наследственность в вопросе долгожительства играет очень важную роль.

На протяжении ряда лет автору книги довелось общаться с некоторыми долгожителями и с ближайшими родственниками из поколений моей семи. Интересен тот факт, что по мужской линии мой дед был десятым ребёнком из одиннадцати детей в семье, а бабушка – последним, четырнадцатым ребенком. Мой отец был пятым ребенком из десяти детей. Среди братьев и сестер отца Элизабет (Елизавета) прожила около 80 лет, Абрам - 81 год, Елена – почти 96 лет. До последних дней жизни она жила полнокровной жизнью, много читала, выполняла домашнюю работу, любила разговаривать по телефону. По женской линии – бабушка была пятым ребенком из девяти детей, а дедушка – шестым из восьми детей. Моя мать – шестая из четырнадцати детей в семье. Многие братья и сестры матери достигли 80-летнего рубежа жизни. Стоит сказать и об экологических условиях проживания этих семей – это горные районы поселков Шемаха и Чухур-Юрт Азербайджана, холмистая местность Голландии и равнинная русского Поволжья.

Долголетие обусловлено генетическими факторами. Эта гипотеза со времен английских ученых М. Битони и К. Пирсона, которые установили существенную связь между долголетием предков и потомков во многих семьях английских аристократов, не вызывает серьезных сомнений. Доказана наследственная предрасположенность как к долгожительству, так и к вероятности появления болезней старости (атеросклероз, ишемическая болезнь сердца и др.). Но также известно, что сочетание благоприятных факторов способствует долголетию и даже несколько сглаживает значение наследственных основ. И, наоборот, в менее благоприятных условиях «плохие» генные изменения реализуются быстрее. Хотя долгожительство и не является чисто генетической проблемой, в литературе широко обсуждаются предположения о существовании наследственной «продленной программы» жизни, или наследственного комплекса морфо-функциональных показателей, способствующих потенциально хорошему здоровью, или же об отсутствии факторов риска в отношении ряда важнейших возрастных заболеваний.

Николай Басов в книге «Ключ к раздельному питанию» высказывает мысль, что
что семья не просто передает хорошие, живучие гены, но и прививает мораль долгожителя, манеру долгоживущего, ломает психологию «свечки», а обучает выдерживать все перипетии и обеспечивает намеренье жить в стиле «бесконечного продолжения»… Вместе с образом жизни, привито отношение к столу, как к месту, где кормят тело, а не желудок, где стыдно быть неумеренным, и очень вредно есть что-то с чем-то, от чего болит живот. То есть, я думаю, что помимо генов семьи передают долгожителям что-то не менее ценное – практический опыт, который касается всех сторон жизни, и который впоследствии служит так надежно и так долго.

Наследственность, отсутствие в нескольких поколениях «семейных» заболеваний. Здоровые гены предков – это немаловажный фактор в долголетии потомков. Если бабушки и дедушки и по материнской, и по отцовской линии вели обычный, но здоровый образ жизни, не страдали сердечнососудистыми или онкологическими заболеваниями, то это маленький залог долголетия не только их детей, но и внуков.
Как не странно это звучит, но – многодетные семьи. Именно в многодетных семьях выстраивается своеобразная цепочка взаимопомощи и поддержки ближнего, дружбы и заботы. Истинная дружба членов семьи побуждает каждого к доброте и благим поступкам; здесь есть смысл и цель жизни каждого – помочь самому родному человеку и знать, что и ты получишь такую же помощь, когда будешь в ней нуждаться.

Учёные давно наблюдают за людьми перевалившими столетнй рубеж, это так называемые долгожители . До сих пор считалось, что заслуга в этом, в большинстве случаев, принадлежит их родителям, которые при зачатии заложили в них ген долгожителя.

Учёные геронтологи доказали, что чем больше у человека повреждённых генов, тем меньше он живёт. У долгожителей же таких генов практически не наблюдается. Вывод однозначен: ген долгожительства передаётся по наследству.

Общеизвестным считается то обстоятельство, что продолжительность жизни находится в преимущественной зависимости от тех особенностей, которые человек получает в миг зачатия. Эти особенности дают энергию и определяют форму человеческого строения (крепкое или слабое).

Факторы влияющие на продолжительность жизни будующего ребёнка

  • Один из партнёров страдает хроническими заболеваниями;
  • в роду у партнёров были нервные заболевания;
  • в анамнезе многократные выкидыши или повторное рождение мёртвого ребёнка;
  • если в семье уже есть ребёнок с отклонениями;
  • будующая мама принимала лекарства, которые вызывают мутацию в генах;
  • пара - кровные родственники(брат, сестра и т.д.);
  • Один из партнёров работает на вредном производстве.
В вышеперечисленных случаях нужно обязательно проконсультироваться с врачом прежде чем решиться на зачатие.

Продолжительность жизни, по сути, является производным от бодрого состояния родителей человека и мгновения, в которое его зачатие свершилось. Удача хорошо родиться – это добро, которое можно желать каждому, но, к сожалению, не каждым по достоинству оцененное.

Обратимся к трём составляющим, влияющим на длительность жизни: родительское здоровье, момент зачатия и период беременности.

Родительское здоровье.

Человек – подобие своих отца и матери не только внешне, но и внутренне. Слабости и пороки их внутренних органов передаются детям. Телосложение старшего поколения способствует их предрасположению к разным заболеваниям, что может также передаваться и детям. Например, заболевание подагрой, туберкулёзом и геморроем, склонность к образованию камней в желчном пузыре и почках могут стать родовыми проблемами.

Возраст отца и матери может негативно влиять на длительность и качество жизни их детей. Речь идёт о слишком молодых или очень старых людях. Вступление в ранний брак , раньше 24 лет для мужчины и 18 для женщины, создаёт угрозу расстройства их собственного состояния, что неминуемо повлияет на рождение слабых детей. В особенности это касается женщин.

Момент зачатия.

Этот миг имеет значительное воздействие на рождённого человека как со стороны его телесного, так и нравственного восприятия. Время зачатия чрезвычайно важно, и мама с папой не должны об этом забывать. Именно в этот миг зарождается новая жизнь.

Природа не зря придаёт этому мигу наивысшую степень восторженности. Известны ведь случаи, когда ребёнок, зачатый от лиц, находящихся в опьянении , рождается откровенным глупцом.

Крайность порождает крайность. Ребёнок, зачатый в минуты недоброго душевного расположения либо беспокойства, может в своей жизни в большей или меньшей степени страдать от такого морального или физического состояния.

Доктор Писклаков рассказывает о профилактике будующих мам, начиная с детского возраста:

Период беременности.

Отец, безусловно, основной виновник происхождения новой жизни. Но развитие тела будущего ребёнка напрямую зависит лишь от матери. Через мать зародыш получает всё необходимое для правильного развития.

Слабый мужчина может произвести крепкого ребёнка, если женщина наделена отменным здоровьем. И, наоборот, от слабой женщины никогда не родится крепкий и бодрый ребёнок, каким бы сильным ни был мужчина.

Беременность – это особый момент в жизни женщины. Исключение нервозности , пагубных пристрастий , умение отказаться от излишеств и удовольствий, способных навредить будущему ребёнку, дают шанс для рождения человека с хорошими жизненными перспективами.

Наследственная генетика относится к средствам продления жизни, не находящимся во власти человека, но в его власти находится возможность передать последующему поколению предрасположенность к продолжительной жизни .

Но не всё так просто, ведь доказано, что продолжительность жизни состоит из трех состовляющих, это наследственные факторы, влияние на организм внешней среды и образ жизни человека. Если человек, получивший прекрасные гены при рождении, будет постепенно убивать себя , то ему не помогут никакие гены, он их попросту разрушит.

Думая о будущем ребёнке, не забывайте о себе. Больше двигайтесь, чаще выезжайте на природу , не сокращайте качество и продолжительность сна (на сколько это возможно). Всё в Ваших руках, нужно всего лишь лечь чуть пораньше и встать на полчаса раньше обычного. Вместо душного автобуса до работы доехать на велосипеде или хотя бы одну-две остановки пройти пешком.

Здоровая семья - залог здоровья детей

1 . Живое характеризуется: негэнтропией, метаболизмом, размножением, наследственностью и изменчивостью.

2 . Теория абиогенного происхождения жизни на земле предложена: А.Опариным.

3 . Эволюционно обусловленные уровни живого: молекулярно-генетический, клеточный, организменный, популяционно-видовой, биогеоценотический, биосферный.

4 . В 1839г. клеточная теория была сформулирована: Т.Шванном и М.Шлейдоном.

5 . Важное дополнение к клеточной теории о том, что “каждая клетка происходит из другой клетки”, сделал в 1858г.: Р.Вирхов.

6 . К прокариотам относятся: сине-зеленые водоросли и бактерии.

7 . Современной гипотезой происхождения эукариотических клеток является: гипотеза эндосимбиоза.

8 . Организмы: прокариоты – организация наследственного материала: нуклеоид.

Организмы: эукариоты – организация наследственного материала: хромосомы, содержащие ДНК и белки.

9 . Современная модель молекулярной организации плазматической мембраны: жилкостно-мозаичная.

10 . Органеллы: рибосомы -- Функции: синтез белков. Органеллы: митохондрии -- Функции: образование АТФ. Органеллы: Гладкая ЭПС -- Функции: синтез углеводов и жиров. Органеллы: пластинчатый комплекс -- Функции: упаковка и выделение секретов и экскретов за пределы клетки. Органеллы: центросома -- Функции: участие в делении клеток. Органеллы: лизосомы -- Функции: внутриклеточное переваривание веществ.

11 . Плазмиды клеток - это небольшие фрагменты: ДНК.

12 . Генетическая активность ядра клетки определяется: эухроматином.

13 . Молекулярная структура ДНК расшифрована: Уотсоном и Криком.

14 . Молекула ДНК эукариот: линейная, двухцепочечная.

15 . ДНК клеток эукариот находится: в ядре, хлоропластах, митохондриях.

16 . Химические компоненты хроматина эукариотических клеток: гистоновые белки, ДНК, кислые белки.

17 . Число, структура и размеры хромосом характеризуют: кариотип.

18 . Генетический код содержит: 61 смысловой и 3 терминирующих триплета.

19 . Информативный участок гена – это: экзон.

20 . Участки, разделяющие гены – это: спейсеры.

21 . Повторяющиеся последовательности ДНК кодируют: тРНК, рРНК.

22 .Мультигенные семейства и комплексы, свойственные геному: эукариот.

23 . Стадии биосинтеза белка - Протекающие процессы

транскрипция – образование пре-иРНК

процессинг – преобразование пре-иРНК в

зрелую иРНК

трансляция – образование первичной

структуры белка

конформация – образование окончательной молекулы белка

24 . Транскрипцию осуществляет фермент: РНК-полимераза.

25 . Оперон содержит: ген-промотор, структурные гены, ген-оператор.

26 . Регуляция транскрипции может осуществляться: индукцией и репрессией.

27 . Индукция оперона у прокариот: поступление индуктора в цитоплазму – образование комплекса индуктор-репрессор – освобождение гена-оператора от связи с репрессором – движение фермента РНК-полимеразы к структурным генам – считывание информации со структурных генов – образование конечного белкового продукта.

28 . Индуцировать работу оперона могут:

ц-АМФ, гомоны, стадиоспецифические белки.

Размножение клеток и организмов.

29 . Упаковки ДНК в хромосоме: нуклеосомная нить – микрофибрилла – хромонема – хроматида.

30. Нуклеосомная нить – элементарная структура хромосомы эукариот состоит: из гистоновых белков и ДНК.

31 . Хромосомы дифференцированных клеток эукариот содержат: одну молекулу ДНК, белки гистоны.

32 . Стадии митотического цикла: автосинтетическая интерфаза – профаза – метафаза – анафаза – телофаза.

33 . Митотический цикл клетки включает: постсинтетический период, синтетический период, пресинтетический период, митоз.

34 . Репликация ДНК происходит: в синтетическом периоде.

35 . Наиболее распространенный способ репликации ДНК у эукариот: полуконсервативный.

36 . Репликация ДНК на лидирующей цепи происходит: непрерывно, в направлении 5 3 (новой цепи).

37 . Репликация ДНК на отстающей цепи происходит: фрагментами Оказаки, прерывисто.

38 . Сохранение исходного набора хромосом в результате деления клеток обеспечивает: митоз.

39 . Для поддержания исходного количества хромосом в анафазе митоза к полюсам расходятся: хроматиды.

40 . Биологическое значение митоза заключается: в поддержании постоянства кариотипа в соматических клетках, в осуществлении процессов регенерации и роста, в обеспечении бесполого размножения.

41 . Жизненный цикл клетки может: совпадать с митотическим, включать митотический цикл, период дифференцировки и гибель.

42 . Тип клеток Жизненный цикл

Нервные -- включает дифференцировку и гибель

Паренхима печени, почек – включает гетеросинтетическую интерфазу и митотический цикл.

Базальный слой эпителия кожи – равен митотическому.

43 . К бесполому размножению относятся: шизогения, митоз.

44 . При бесполом размножении: потомство представляет генетические копии родителей, клеточным механизмом является митоз, поставляется материал преимущественно для стабилизирующего отбора.

45 . К половому размножению относятся: партеногенез, гиногенез, андрогенез.

46 . При партеногенезе организм развивается: из яйцеклетки.

47 . При андрогенезе организм развивается: из двух сперматозоидов в цитоплазме яйцеклетки.

48 . При гиногенезе организм развивается: из яйцеклетки.

49 . Стадии сперматогенеза: размножение, рост, созревание, формирование.

50 . Стадии сперматогенеза число - Набор хромосом (n) и молекул ДНК (с)

сперматогонии 2n2c

сперматоцит I порядка 2п4с

сперматоцит II порядка 1п2с

сперматида 1п1с

51 . Клетки на стадии овогенеза - Набор хромосом (п) и число молекул ДНК (с)

Овогонии 2n2c

Овоцит I порядка 2п4с

Овоцит II порядка 1п2с

Яйцеклетка 1п1с

52 . Особенностями мейоза являются: в профазе1 происходит конъюгация хромосом и кроссинговер, в анафазе1 к полюсам клетки расходятся гомологичные хромосомы, мейоз включает два деления, в анафазе2 к полюсам клетки расходятся хроматиды, в результате мейоза в гаметах образуется гаплоидный набор хромосом.

53 . В мейозе расхождение гомологичных-унивалентов происходит: в анафазе1.

54 . В мейозе конъюгация гомологичных хромосом и кроссинговер происходит: в профазе1.

55 . Независимое расхождение хромосом при мейозе является важнейшим механизмом: комбинативной изменчивости.

Индивидуальное развитие организмов.

56 . Ланцетники имеют яйцеклетку: первично изолецитальную.

57 . Амфибии имеют яйцеклетку: умеренно телолецитальную.

58 . Птицы имеют яйцеклетку: резко телолецитальную.

59 . Плацентарные млекопитающие имеют яйцеклетку: вторично изолецитальную.

60 . В процессе оплодотворения яйцеклетки выделяют гиногамоны-1, которые: активируют движение сперматозоидов.

61 . Периоды эмбриогенеза: зигота, дробление, бластула, гаструла, образование осевых органов, гисто- и органогенез.

62 . Тип яйцеклетки Характер дробления

Первично изолецитальня – полное равномерное

Резко телолецитальная – неполное дискоидальное

Умерено телолецитальная – полное неравномерное.

63 . Способы дробления и гаструляции зависят: от количества желтка в яйцеклетке.

64 . В период дробления происходит: митотическое деление без дальнейшего роста клеток.

65 . Дробление яйцеклетки человека: полное неравномерное.

66 . Гаструляция у плацентарных происходит путем: деляминации.

67 . Головной мозг, спинной мозг и рецепторы органов чувств человека развиваются: из эктодермы.

68 . Сердце и кровеносные сосуды человека развиваются из участков мезодермы: спланхнотома.

69 . Печень и поджелудочная железа человека развиваются: из энтодермы.

70 . Опорно-двигательная система человека развивается из участков мезодермы: склеротома, миотома.

71 . Ткани зуба развиваются: эмаль – из эктодермы, дентин – из мезодермы, пульпа – из энтодермы.

72 . К провизорным органам анамний относятся: желточный мешок.

73 . Плаценту человека образуют: слизистая матки, хорион.

74 . В связи с развитием плаценты у млекопитающих редуцируются: желточный мешок, аллантойс.

75 . Ворсинка хориона омывается кровью материнского организма в плаценте: гемохориальный.

76 . Генетическая регуляция онтогенеза осуществляется: последовательной дерепрессией и репрессией генов.

77 . Продукты генов (иРНК, рРНК, и др.), определяющие развитие зиготы, синтезируются: в период овогенеза.

78 . Геном зародыша позвоночных всегда репрессироан на стадии: зиготы.

79 . Пуффы политенных хромосом являются: активными участками генома, временными образованиями,

80 . Дерепрессия генов зародыша человека начинается на стадии: дробления.

81 . Тотипотентность клеток зародыша человека: выше на ранних стадиях развития.

82 . Клетки зародыша способны к смене направления дальнейшего развития на стадии: дробления.

83 . Развитие однояйцевых близнецов у человека невозможно благодаря: тотипотентности бластомера.

84 . Развитие однояйцевых близнецов у человека возможно благодаря типу его яйцеклетки: регуляционной.

85 . Канализация развития зародыша связана с приобретением: унипотентности бластомеров, лабильной детерминации.

86 . Дифференцировка клеток в эмбриогенезе обусловлена: дифференциальной активностью генов, межклеточными контактными взаимодействиями.

87 . Эмбриональная индукция характеризуется: влиянием одних зачатков на развитие других, наличием организаторов, цепью последовательных индукций, способностью эмбрионального зачатка к восприятию индуктора.

88 . В критические периоды эмбриогенеза отмечаются: коренные изменения в развитии зародыша, наибольшая чувствительность к действию вредных факторов, повышение перинатальной смертности.

89. Восприимчивость эмбриона к действию внешних факторов в критические периоды: повышается.

90 . В эмбриогенезе критические периоды для всего зародыша: имплантация, плацентация.

91 . Наибольшая чувствительность органов зародыша млекопитающих к действию вредных факторов проявляется в периоды: образования плаценты, закладки органа.

92 . В период гисто- и органогенеза возникают пороки: фенокопии, ненаследственные.

93 . Наследственные пороки развития у человека обусловлены: генеративными мутациями, мутациями в зиготе.

94 . Наследственные пороки развития у человека обусловлены мутациями: в половых клетках, в зиготе, в бластомерах на ранних стадиях дробления.

95 . Для членистоногих при развитии с неполным метаморфозом характерны стадии: нимфы, личинки, яйца, имаго.

96 . Для развития с полным метаморфозом характерны стадии: личинки, яйца, куколки, имаго.

97 . Гистологические ферменты лизосом разрушают органы предшествующей стадии развития в период: куколки.

98 . Возраст Период постнатального онтогенеза человека

8-12 лет 1-е детство

13-16 лет подростковый

17-21 лет юношеский

22-35 лет 1-й период зрелого возраста

36-69 лет 2-й период зрелого возраста

99 . Ведущим фактором, влияющим на скорость полового созревания у человека, является: характер питания.

100 . Рост человека: имеет различную скорость на всех этапах онтогенеза, контролируется несколькими неаллельными генами, зависит от условий среды.

101 . Дорепродуктивный период онтогенеза человека характеризуется: дифференцировкой систем органов, ростом организма, становлением вторичных половых признаков.

102 . Сокращение продолжительности жизни человека обусловлено: избыточным весом, алкоголизмом, токсическим действием табачного дыма, сильными эмоциональными стрессами.

103. Постпродуктивный период онтогенеза человека характеризуется: снижением приспособительных возможностей организма, замедлением обменных процессов, социальной зрелостью и опытом, инволюцией систем и органов.

104 . Главный механизм старения заключается: в генетически запрограммированном нарушении гомеостаза.

Эндокринная Ш.Броун-Секар

Интоксикация организма продуктами гниения и ядами бактерий - И.Павлов

Накопление с возрастом свободных радикалов - Харман

Перенапряжение нервной системы - И.Павлов

Старение соединительной ткани - А.Богомолец

Генетически запрограммированной продолжительности жизни - Л.Хейфлик

107 . Старение человека сопровождается: снижением уровня пищеварительных соков, уменьшением жизненной емкости легких, ослаблением иммунитета.

108 . Ведущим фактором долгожительства человека, доказанным близнецовым методом, является: наследственность.

109 . Наследственный характер долгожитнльства подтверждается методом: близнецовым.

110 . Ген старения человека находится: в 1-й паре хромосом.

ОСНОВЫ ГЕНЕТИКИ.

111 . Цитологические основы “чистоты” гамет заключаются: в расхождении гомологичных хромосом в анафазе 1 деления мейоза, в наличии в гамете по одному аллельному гену из пары.

112 . По 2-му закону Менделя происходит расщепление признаков у гибридов в отношении: 1:2:1 по генотипу и 3:1 по фенотипу.

113 . При неполном доминировании расщепление по фенотипу у потомков от скрещивания двух гетерозиготных организмов составляет: 1:2:1.

114 . Взаимодействие между генами - Примеры

полное доминирование IaIo, IbIo

кодоминирование IaIb

115 . Для установления генотипа особи (анализирующее скрещивание) ее скрещивают: имеющим рецессивный признак.

116 . Вероятность резус-конфликта при браке резус-положительной гомозиготной матери и резус-отрицательного отца: 0%.

117 . Вероятность резус-конфликта при браке резус-положительной гетерозиготной матери и резус-отрицательного отца: 0%.

118 . Вероятность резус-конфликта при браке резус-отрицательной матери и резус-положительного гомозиготного отца по этому признаку: 100%.

119 . Вероятность резус-конфликта при браке гетерозиготных по резус-фактору родителей: 0%.

120 . Вероятность резус-конфликта при браке резус-отрицательной матери и резус-положительного гетерозиготного отца: 50%.

121 . Множественный аллелизм означает наличие в генофонде: нескольких аллелей одного гена, отвечающих за развитие разных проявлений признака.

122 . При взаимодействии генов по типу кодоминирования: в фенотипе одновременно проявляются оба аллельных гена.

123 . Присутствие в генотипе в одинаковой мере функционально активных двух аллелей одного гена характерно: для кодоминирования.

124 . У детей I, II, III, IV группы крови. Возможные группы крови родителей: II и III.

125 . Родители гетерозиготны по III группе крови. Вероятность рождения ребенка с III группой крови составит: 75%.

126 . Мать со II группой крови имеет ребенка с I группой крови. Возможные группы крови отца: I, II, III.

127 . У родителей с I и IV группой крови дети унаследуют: II и III.

128 . Плейотропия – явление, при котором: одна пара генов контролирует проявление нескольких признаков.

129 . По 3-му закону Менделя происходит расщепление признаков у гибридов в отношении: 9:3:3:1 по фенотипу.

130 . Расщепление по фенотипу в отношении 13:3 или 12:3:1 возможно: при эпистазе.

131 . Расщепление по фенотипу в отношении 9:7 возможно: при комплементарном взаимодействии.

132 . При комплементарном взаимодействии новое качество признака будет в случае генотипов: АаВв, ААВВ, ААВв, АаВВ.

133 . При эпистатическом действии доминантного гена (В) проявление признака, контролируемого доминантным геном (А), не будет в генотипах: ААВВ, АаВВ, ААВв, АаВв.

134 . Разная степень выраженности признаков цвета кожи, роста организма, близорукости у человека обусловлена: полимерией.

135. Сцепленное наследование признаков было установлено: Т.Морганом.

136

Группа сцепления – гены, локализованные в одной хромосоме

Генетическое картирование – определение положения какого-либо гена по отношению к другим генам в хромосоме

Сцепленное наследование признаков – наследование признаков, контролируемых генами, локализованными в одной хромосоме

Наследование, сцепленное с полом – наследование признаков, гены которых локализованы в негомологичных участках Х или Y хромосом.

137 . Расщепление по фенотипу при скрещивании АаВв х аавв будет составлять:

При независимом наследовании – АаВв, аавв, Аавв, ааВв равновероятно.

При полном сцеплении генов – АаВв, аавв равновероятно.

При неполном сцеплении генов -- АаВв, аавв, Аавв, ааВв в различных соотношениях.

138 . Генотип особи АаВв, гены А и В расположены - Возможное % соотношение гамет

В разных парах хромосом – АВ, Ав, аВ, ав -- в равных % соотношениях

В одной хромосоме и сцепление полное – АВ и аа в равных % соотношениях

В одной хромосоме, неполное сцепление – АВ, Ав, аВ, ав – в разных % соотношениях.

139 . Гены, локализованные в одной хромосоме, наследуются: сцепленно.

140 . Расстояние между генами, согласно теории Моргана, определяется: процентом кроссоверных организмов, полученных при анализирующем скрещивании.

141 . Частота кроссинговера зависит: от расстояния между генами в хромосоме.

143 . Возможное число кроссоверных форм: всегда меньше 50%.

144 . Если расстояние между генами А-В составляет 15 морганид, генами А-С 25 морганид, а генами В-С 10 морганид, то гены в хромосоме расположены в порядке: А-В-С.

145 . Число кроссоверных гамет будет больше, если расстояние между генами, контролирующими исследуемые признаки, будет равно: 25 морганид.

146 . Если мужчина с полученными от матери полидактилией и катарактой, гены которых доминантны, локализованы в одной аутосоме и сцеплены абсолютно, женится на здоровой женщине, то дети унаследуют более вероятно: оба порока одновременно, будут здоровы.

147 . Если расстояние между генами А и В в аутосоме составляет 40 морганид, то в дигетерозиготном организме образуется гамет: 30% каждого сорта некроссоверных, 20% каждого сорта кроссоверных.

148 . Гомогаметность характерна для самок: млекопитающих, дрозофил.

149 . Сцепленно с полом наследуются признаки, контролируемые генами, локализованными: в Х-хромосомах, в Y-хромосо-мах.

150 . Полностью сцепленно с полом наследуются признаки, контролируемые генами, находящимися: в негомологичном участке Х-хромосомы, в негомологичном участке Y-хромосомы.

151 . В брак вступают женщина-носитель гемофилии и здоровый мужчина. Возможность фенотипического проявления этого признака у детей составляет: 50% среди мальчиков.

152 . Если мужчина, страдающий дальтонизмом, женится на женщине-носитель-нице этого же гена, вероятность проявления этого признака у детей составит: 50% среди девочек и 50% среди мальчиков.

153 . В брак вступает мужчина, имеющий гипертрихоз, наследуемый как признак, сцепленный с Y-хромосомой. Вероятность проявления этого признака у детей: 100% среди мальчиков.

154 . Основные понятия и их определения:

Признаки, сцепленные с полом – признаки контролируются генами, локализованными в половых хромосомах.

Признаки, зависимые от пола – характер проявления доминантного гена зависит от пола.

Признаки, ограниченные полом – гены имеются у обоих полов, но признаки проявляются у одного пола.

155 . Модификационная изменчивость связана: с изменением активности ферментов.

156 . Методом изучения модификационной изменчивости является: вариационно-стстаический.

157 . Диапазон модификационной изменчивости является: нормой реакции.

158 . Значения признака образуют вариационный ряд при изменчивости: модификационной.

159 . Вариационная кривая, отражающая изменение признака в пределахнормы реакции, показывает, что организмы: со средним значением признака встречаются с высокой частотой, с крайними значениями признака встречаются редко.

160. Норма реакции признака: наследуется, носит приспособительный характер, может изменяться под влиянием факторов среды.

161 . Нестабильные условия среды способствуют сохранению организмов: с широкой нормой реакции.

162 . Степень выраженности признака называется: экспрессивностью.

163 . Пробиваемость гена в признак называется: пенетрантностью.

164 . Новые сочетания признаков у потомства обусловлены: комбинацией генов.

165 . Механизмы комбинативной изменчивости: кроссинговер, случайный подбор родительских пар, случайная встреча гамет при оплодотворении, вегетативное размножение.

166 . Рекомбинация наследственной информации осуществляется: при коньюгации.

167 . Новые сочетания признаков у организмов возможны в результате: независимого расхождения хромосом, кроссинговера, случайной встречи гамет при оплодотворении, случайного подбора родительских пар.

168 . Мутации и их характеристика:

Гетероплоидия – увеличение или уменьшение кариотипа на одну хромосому.

Полиплоидия – увеличение числа хромосом, кратное гаплоидному набору.

Инверсия – поворот участка хромосомы на 180 .

Дупликация – удвоение участка хромосомы.

Делеция – утрата части хромосомы.

169 . Генными мутациями обусловлены: серповидноклеточная анемия, фенил клетонурия.

170 . Генеративные мутации наследуются, носят ненаправленный характер, у генетически близких видов сходны.

171 . Закон гомологических рядов наследственной изменчивости был открыт в 1932 году: Н.И.Вавиловым.

172 . Роль мутации в эволюционном процессе заключается: в увеличении генетического разнообразия особей популяций, в увеличении резерва для наследственной изменчивости.

173 . К антимутационным механизмам относятся: репарация ДНК, многократные повторы генов, парность хромосом, вырожденность генетического кода.

174 . Периоды воздействия на человека повышенной солнечной активности сопровождаются: увеличением частоты мутаций, ростом частоты генетически обусловленных заболеваний, увеличением частоты появления злокачественных опухолей.

175 . Генеалогический метод позволяет установить: тип наследования заболевания или признака, прогноз риска заболевания для потомства.

176 . При аутосомно-доминантном типе наследования: признак обнаруживается в каждом поколении, вероятность проявления редкого признака у ребенка, если этот признак имеет один из родителей, равен 50%, потомки мужского и женского пола наследуют признаки с одинаковой частотой.

177 . Основным методом диагностики хромосомных болезней человека является: цитогенетический.

178 . Генные мутации можно выявить с помощью метода: биохимического.

179 . Цитогенетический метод выявляет мутации: хромосомные, геномные.

180 . Для прямого способа изучения кариотипа человека используется: делящиеся клетки костного мозга.

181 . Материал для непрямого способа изучения кариотипа: культура клеток из амниотической жидкости.

182 . Денверская классификация хромосом основана: на дифференциальном окрашивании хромосом.

183 . Парижская классификация хромосом основана: на дифференциальном окрашивании метафазных хромосом.

184 . Геномными мутациями обусловлены: синдром Дауна, синдром Патау.

185 . Нарушение числа аутосом обуславливает синдромы: Патау, Дауна.

186 . Связаны с нарушением структуры хромосом синдромы: Вольфа, “Кошачьего крика”.

187 . Кариотип и хромосомные болезни:

47.21+ -- синдром Вольфа

47.ХХХ -- синдром женской трисомии

47.ХХУ -- синдром Кляйнфельтера

188 . Экспресс метод определения полового хроматина может быть использован для диагностики синдромов: Шерешевского-Тернера, Кляйнфельтера.

189 . Х-половой хроматин (тельце Барра) отсутствует при синдроме: Шерешевского-Тернера.

190 . Х-половой хроматин определяется: в соматических клетках на стадии интерфазы.

191 . Для установления соотносительной роли генотипа и среды в развитии заболеваний у человека применяется метод: близнецовый.

192 . Ведущий фактор для развития признака или заболевания - Признаки или заболевания. Коэффициент наследуемости Хольцингера

Среда – паротит (свинка) Н=1.0, незаращение верхней губы Н=0.3, эндемический зоб Н=0.4.

Генотип – форма носа Н=1.0

Среда и генотип – сахарный диабет Н=0.6

193 . Популяционная генетика человека изучает: генетическую структуру популяций, частоту встречаемости аллелей, обуславливающих заболевания человека.

194. Частота встречаемости генетически обусловленных заболеваний человека распределяется по закону: Харди-Вайнберга.

195 . Увеличение риска рождения детей с наследственными аномалиями обусловлено: географическими изолятами, родственными браками.

196 . Географические и социальные изоляты увеличивают риск рождения детей с наследственной патологией вследствии: гомогенезации популяций.

197 . Нарушение панмиксии в популяциях приводит: к увеличению наследственных патологий, к вероятности перехода рецессивных генов в гомозиготное состояние.

198-199 . Степень родства и доля общих генов:

Монозиготные близнецы – 100%

Сибсы – 50%

Дядя и племянник – 25%

Родитель и ребенок – 50%

дед и внук – 25%

200 . Коэффициент родства определяет: долю общих генов, полученных от предков

201 . Родственные браки увеличиваюь вероятность: перехода рецессивных генов в гомозиготное состояние.

202 . Фаги могут осуществлять: трансдукцию.

203 . Способами трансгенеза являются: трансформация, трансдукция.

204 . Методом генной инженерии является: трансгеноз.

205 . ПОЛУЧЕНИЕ - МЕТОДЫ

Штаммов кишечной палочки, синтезирующей гормоны человека, является задачей – генной инженерии.

Гормонов человека, синтезированных кишечной палочкой в промышленных масштабах, является задачей -- биотехнологии.

206 . Генотерапия заключается: в репарации дефектного гена, в замене дефектного гена.

ГОМЕОСТАЗ

207 . Генетический гомеостаз – это: сохранение генетической индивидуальности.

208 . Механизмы поддержания генетического гомеостаза: редупликация ДНК, репарация ДНК, точное распределение генетической информации при митозе.

209 . При опухолевом росте: пролиферация клеток возрастает, способность к дифференцировке утрачивается.

210 . Конституционный иммунитет обусловлен: отсутствием взаимодействия между клеточными рецепторами и антигеном.

211 . К неспецифическим факторам иммунной защиты у млекопитающих относятся: барьерная функция эпителия кожи и слизистых оболочек, лизоцим, бактерицидные свойства желудочного и кишечного сока.

212 . К неспецифическим факторам иммунной защиты у позвоночных относятся: тканевые барьеры и лизоцим.

213 . К центральным органам иммунной системы амниот относятся: Пейеровы бляшки тонкого кишечника, сумка Фабрициуса, костный мозг, тимус.

214 . Периферическими органами системы иммунитета являются: лимфатические узлы, селезенка, небные миндалины.

215 . У человека органами иммунной системы являются: лимфатические узлы, Пейеровы бляшки, костный мозг.

216 . Формы иммунитета и примеры:

Специфический – антителообразование.

Неспецифический – барьерные свойства кожи, антимикробные свойства лизоцима.

217 . Антитела синтезируют: плазматические клетки.

218 . Клеточный иммунитет не развивается: при аутотрансплантации.

219 . Толерантность – это: отсутствие иммунного ответа на антиген.

220 . Физиологическая регенерация обеспечивает: самообновление на тканевом уровне.

221 . Основные способы репаративной регенерации внутренних органов млекопитающих: регенерационная гипертрофия, компенсаторная гипертрофия.

Почему мы еще не нашли средство продлить жизнь до 100–150 лет, хотя очень хотим? В чем секрет долгожителей, и есть ли он вообще?


«В 1951 году на Кавказские Минеральные Воды приехал отдыхать колхозник артели имени Андреева Александровского района Ставропольского края Василий Сергеевич Тишкин. Это был не совсем обычный курортник. В списке отдыхающих в графе "год рождения" против его фамилии значилось "1806 год". Этот колхозник в 1950 году в возрасте 144 лет выработал 256 трудодней».

«Здоровье» № 3, 1955 год

Честно говоря, верится с трудом. Тем более что официальные документы не подтвердили, что такой человек существовал. Пока официальный рекорд за Жанной Кальман - француженкой, которая умерла в возрасте 122 лет. Из ныне живущих на Земле людей нет никого старше 116 полных лет.

Чем от простых смертных отличаются те, кто смог преодолеть вековой рубеж ? Вопрос неоднозначный. Жанна Кальман, по ее словам, не прибегала ни к каким специальным средствам, чтобы продлить жизнь. Например, ей не были чужды алкоголь и сигареты (бросить курить ей пришлось только в 117 лет после операции). Это, конечно, не значит, что вредные привычки укрепляют здоровье. Однако случай с Кальман показывает, что в долгожительстве не все так однозначно.

«Здоровье» нашло несколько возможных причин, почему некоторые живут 90 лет и более. Конечно, если вы экстраверт, это абсолютно не значит, что вы проживете больше своих малообщительных сверстников. Но то что долголетие связано с некоторыми особенностями генетики, окружающих условий и поведения, отрицать нельзя.

Секрет долгожительства 1: открытость и оптимизм

«Человек - существо социальное, и условия жизни человеческого общества определяют всю его жизнь. Проблема долголетия - проблема биологическая и социальная одновременно».

«Здоровье» № 3, 1955 год

Из похожей предпосылки исходили авторы исследования, опубликованного в журнале Frontiers in Genetics в 2013 году. Они изучили 583 американские и датские семьи, в которых были долгожители. Помимо ряда генетических исследований, они провели подробное анкетирование и самих долгожителей, и их супругов. Выяснилось, что среди людей старше 90 лет велика доля экстравертов. Те, кому не нравилось общаться, реже доживали до этого возраста.

Похожие данные получили в 2006 году, когда исследовали черты характера 285 долгожителей из штата Джорджия в возрасте 98 и более лет. Помимо того что долгожители сами отвечали на вопросы анкет, 273 из них давали дополнительную информацию об участниках. Практически все долгожители имели сниженные по сравнению с обычными людьми уровни нейротизма и враждебности, зато чаще проявляли доверие и были экстравертами, открытыми ко всему новому.

Секрет долгожительства 2: хорошая наследственность

«Оказались несостоятельными теории, пытающиеся найти причины преждевременной старости в изменениях одного какого-либо органа или ткани. Такой подход неверен. Живой организм является единой системой, определенным образом реагирующей на изменения внешней среды».

«Здоровье» № 3, 1955 год

Важен и характер, и состояние организма. Дать немало важной информации могут исследования геномов долгожителей. Одна из таких работ посвящена японцам, живущим на острове Окинава. Это место славится наибольшей концентрацией долгожителей и самой высокой в мире средней продолжительностью жизни: 92 года у женщин и 88 - у мужчин. В экономическом плане этот изолированный остров далеко не самый благоприятный - и никогда таким не был. А это значит, что максимальный возраст окинавцев определяет по большей части наследственность, а не благоприятные внешние условия.

Судя по результатам исследования, жителям Окинавы есть за что почитать своих предков. Большинство долгожителей этого острова происходят от некой небольшой группы японцев, в которой часто встречались «полезные» варианты некоторых генов. Гены, о которых идет речь, усиливают восприятие сигналов от гормона инсулина, а также снижают количество интерлейкина 1 - «молекулы воспаления». Это позволяет дольше поддерживать правильный обмен веществ и не болеть. Ученые подсчитали, что для брата или сестры долгожителя с Окинавы вероятность самому прожить больше 90 лет в 3-5 раз больше, чем для их ровесников без долгожителей в роду.

Секрет долгожительства 3: правильная реакция на стресс

«Собаки, подвергшиеся нервным травмам, резко худели, доходили до полного истощения. Иногда шерсть выпадала, собаки плешивели. У них появлялись кожные болезни. Возникала мышечная слабость, животные не могли сами взбираться на стол для опытов, резко падал тонус мускулатуры. Собаки начинали быстро дряхлеть».

«Здоровье» № 3, 1955 год

Тот, кто слишком много беспокоится, долго не проживет. Но и чрезмерно беспечные подвергают себя повышенной опасности и поэтому быстро умирают. Поэтому залог долгой и счастливой жизни - умеренная реакция на стресс, позволяющая избегать опасных воздействий, но не изводить себя из-за мелочей. Это подтверждается не только экспериментами в лаборатории Павлова, о которых писал журнал «Здорвоье» в 1955-м, но и исследованиями последних лет. Оказалось, что и у круглых червей, и у плодовых мушек, и у грызунов реакции нервной системы влияют на то, насколько активно в их организме выделяется инсулин и ряд других гормонов, связанных с обменом веществ. Это, в свою очередь, определяет, что мы усваиваем из пищи и насколько хорошо.

Вызвать сильный стресс, губительный для здоровья, можно несколькими путями: и чисто психологическими воздействиями, и отравлениями, длительным голодом, переохлаждением и перегревом... Чтобы долгое время быть устойчивым ко всем этим воздействиям, нужно иметь «правильные» гены. Это мы тоже наблюдаем у окинавских долгожителей.

Секрет долгожительства 4: в меру неблагоприятные условия

«Необходимо, особенно для старых людей, уметь ограничивать себя, избегать всяких излишеств».

«Здоровье» № 3, 1955 год

Острый стресс, при котором организм едва справляется с навалившимися на него невзгодами, не прибавит долголетия. А вот умеренно неблагоприятные условия, напротив, могут быть полезны. Например, исследования на животных показывают, что возможность питаться досыта не только приводит к лишнему весу, но и повышает частоту дыхания и скорость метаболизма. А вот при ограничении рациона на 10% от стандартного, наоборот, эти показатели снижаются. Получается, что умеренный недостаток пищи вынуждает организм расходовать энергию более экономно - а эту черту связывают с долгожительством.

Понижение температуры тоже продлевает жизнь, по крайней мере у круглых червей. Разумеется, они не должны находиться в холоде, но если температура вокруг стабильно ниже оптимальной на 2-3 градуса, черви живут дольше. Исследователи, которые обнаружили этот эффект в 2013 году, связывают его со сниженной скоростью метаболизма. Выходит, чем быстрее происходит обмен веществ, тем скорее он (а вместе с ним и жизнь животного) прекратится. Обратное тоже верно.

Лекарства от старости

Пока не существует препаратов, которые бы достоверно продлевали жизнь всем и каждому. Однако есть много лекарств, которые борются с отдельными проявлениями старости - ухудшением памяти или состояния костей, потерей мышечной массы и т. д. Также популярны нутрицевтики - биологически активные добавки к пище, содержащие витамины, минералы, и другие вещества, которых часто не хватает в повседневном рационе (при правильном подборе они и в самом деле помогают чувствовать себя лучше и стареть медленнее).

Изобрести же универсальную таблетку от старости , конечно, очень хочется, и такие работы ведутся. Но пока в основном на самых примитивных организмах. Например, два года назад ученые попытались удлинить жизнь дрожжам. Для этого они использовали два уже известных лекарства. Каждое из них по отдельности подавляет реакции иммунной системы и часто помогает пациентам с пересаженными органами. Оказалось, что если жидкость с разведенными в ней в определенной пропорции лекарствами добавлять к колониям дрожжей, последние живут дольше, более устойчивы к стрессу и дольше остаются молодыми (у ученых есть свои способы оценивать возраст дрожжей). По отдельности препараты такого эффекта не вызывают. Объявлять иммуносупрессоры панацеей от старости рано, ведь исследование проведено на дрожжах, которые очень и очень далеки по своему строению от человека. Ни на млекопитающих, ни даже на мушках и червях эффективность метода еще не тестировали.