Методы создания новых лекарственных средств. Основные этапы создания лекарственных препаратов, подходы к получению и отбору лекарственных средств. Новые направления поиска лекарственных препаратов

Путь от получения индивидуального химического соединения до внедрения препарата в медицинскую практику занимает большой отрезок времени и включает в себя следующие этапы:

1) тонкий органический, биоорганический или микробиологический

синтез, идентификация и выделение соединений. Скрининг (отбор БАС) in vitro;

2) создание модели лекарственной формы;

3) проверка биологической активности на животных (in vivo);

4) нахождение оптимального метода синтеза, проверка биологической активности;

5) разработка лекарственной формы;

6) исследование острой и хронической токсичности, мутагенности, тератотоксичности, пирогенности;

7) изучение фармакокинетики и фармакодинамики (в т. ч. и синтез препарата меченного изотопами 3 Н и 14 С);

8) разработка лабораторного регламента производства;

9) клинические испытания;

10) разработка опытно-промышленного регламента, производственного регламента, ВФС, утверждение ВФС;

11) разрешение фармкомитета, приказ Минздрава РФ на применение лекарственного средства. Оформление документации на производство.

Общая стоимость разработки нового лекарственного средства достигает 400 млн долларов США.

Для уменьшения стоимости разработки ЛС используются достижения молекулярной биологии – целенаправленный синтез . Примером такого синтеза может служить создание антагонистов метаболитов нуклеинового обмена – 5-фторурацила, 6-меркаптопурина, флударабина. Еще одним примером является противораковый препарат мелфалан (рацемат – сарколизин).

В самом начале пути создания противоопухолевых препаратов использовали эмбихин – N- метил-N- бис(b-хлорэтил)амин.

Лечение этим препаратом ярко описано А.И. Солженицыным в романе «Раковый корпус». Препарат высокотоксичен, процент излеченных больных был мал (А.И. Солженицыну повезло). Академик АМН Л.Ф. Ларионов предложил ввести азотипритную группу в метаболит – фенилаланин. Так был синтезирован сарколизин, дающий хорошие результаты при лечении рака яичка. В настоящее время используют не рацемат, а оптически индивидуальный препарат – мелфалан. Блестящим примером целенаправленного синтеза является ингибитор превращения неактивного агиотензина I в активный агиотензин II – препарат каптоприл. Агиотензин I является декапептидом, а агиотензин II октапептидом. Карбоксипептидаза А отщепляет с карбоксиконца пептида последовательно лейцин и гистидин, но не может работать в том случае, если предыдущей аминокислотой является пролин.

Знание тонкого механизма работы фермента позволило синтезировать его ингибитор. Ангиотензин II обладает выраженной биологической активностью – вызывает сужение артериол, прессорное действие в 40 раз превосходит действие норадреналина. Каптоприл ингибирует карбоксипептидазу, его используют для лечения гипертонии. Тот же самый принцип был использован при синтезе препарата эналаприл. Рассмотренные препараты – метотрексат, азометония бромид, атенолол и фенилэфрин были получены в результате целенаправленного синтеза.

Другим направлением поиска БАВ является массовый скрининг – проверка биологической активности вновь синтезированных соединений. Ферменты и рецепторы имеют в пространственной структуре «карманы», в которые входят метаболиты или медиаторы. Во взаимодействии метаболита с ферментом принимают участие как полярные группировки, так и гидрофобные. Поэтому при отборе новых соединений для изучения биологической активности необходимо в молекуле иметь сочетание полярных и гидрофобных групп. В качестве гидрофобной части – Alk, Alk(F) n , а также циклические соединения. Но гетероциклы кроме гидрофобной части имеют уже и заряд. В качестве полярных групп используют: OH; O-Alk, OAc, NH 2 ; NHAlk, N(Alk) 2 , NHAc, SO 2 NHR, COOH, C=O, COOR, CONR 1 R 2 , NO 2 , SH, полярные гидрофобные – Cl, Br, J, F. Эти группы, введенные в гидрофобную молекулу, часто придают соединению биологическую активность, и их называют фармакофорными группами.

Введение фармакофорных групп не должно быть беспорядочным. Желательно, чтобы гидрофобные участки и полярные группы располагались на определенном расстоянии. Тем самым они могут моделировать либо метаболит, либо природное лекарственное средство. Этот принцип подобия был заложен в синтезе местноанестезирующих препаратов – анестезина и новокаина. Природным продуктом, обладающим мощным анестезирующим действием, является кокаин. Однако использование наркотического средства далеко небезопасно. В данном случае моделирование структуры природного продукта привело к положительным результатам. Структуры соединений приведены на схеме:

Поиск таких лекарственных средств занял около двадцати лет.

Еще в 80-е гг. XX в. отбор БАС проводился на животных, при этом химику-синтетику требовалось для первичных испытаний нарабатывать десятки граммов соединения. Статистика показывает, что одно новое БАС удается найти при «слепом» синтезе среди 100 000 вновь синтезированных веществ. Для уменьшения затрат скрининг стали проводить на изолированных органах, а затем и на клетках. Причем количество нарабатываемого вещества сократилось до сотен миллиграммов. И, естественно, увеличилось количество изучаемых веществ. Противоопухолевая и противовирусная активность новых соединений в настоящее время изучается на клетках. Живые и убитые клетки при окрашивании имеют различную окраску. Чем больше находят мертвых клеток человеческого штамма злокачественной опухоли под действием испытуемого вещества, тем оно более активно.В институте рака Национального института здоровья США, испытания проводятся на 55 штаммах человеческих опухолей, адаптированных для роста в условиях in vitro. При изучении противовирусной активности клетки, зараженные вирусом, прибавляют к раствору препарата. Ведут подсчет живых клеток.

При исследовании активности вновь синтезированных соединений подлинная революция произошла благодаря успехам биотехнологии. Доступность биомакромолекул (ферментов, белков рецепторов, РНК и т. п.), помещенных на твердый носитель, позволяет с помощью измерения биолюминесценции определять их ингибирование или стимуляцию под действием нового вещества. В настоящее время испытывается in vitro в фирме «Байер» 20 000 новых соединений в год. При этом существенно возрастает роль химиков синтетиков, которые должны обеспечить массовую наработку новых соединений и билдинг-блоков. Возникла так называемая комбинаторная химия (принципы комбинаторной химии рассмотрены в отдельном разделе). Основой для выбора такого синтеза является компьютерный анализ баз данных, в т. ч. и по наличию фармакофорных групп в определенных положениях молекул. Для создания «библиотеки» новых соединений с помощью методов комбинаторной химии необходимо знать закономерности протекания химических реакций. Это является одной из задач данного курса.

Еще одним направлением поиска БАВ служит модификация уже известных лекарственных соединений. Целью изменения структуры ЛС является снижение побочного действия препарата, а также повышение его активности – увеличение терапевтического индекса I t . Определенную роль играет изучение количественной взаимосвязи структура – активность. В качестве одного из примеров можно привести использование метода Хэнча, основанного на определении или расчете по аддитивной схеме липофильности соединения. В качестве меры липофильности используют коэффициент распределения (Р) вещества в системе октанол – вода. В общем виде уравнение Хэнча можно представить следующим выражением

lg 1/c = a 0 + a 1 lgP – a 2 (lgP) 2 + a 3 s + a 4 E s

где с – любая экспериментальная величина, характеризующая биологическую активность; a i – постоянные, полученные при обработке экспериментальных данных; Р –коэффициент распределения октанол – вода (Р = С октанол /С вода, С – концентрация вещества в каждой из фаз), параметры s, E s отражают электронные и стерические параметры молекулы.

Анализ уравнения показывает, что lg 1/c = f lgP, т.е. кривая проходит через максимум, соответствующий веществу с наибольшей активностью. Уравнение в грубом приближении описывает две стадии действия ЛС:

1) транспорт к участку действия;

2) взаимодействие с биомакромолекулой.

В качестве примера можно привести уравнение, связывающее Р с противоопухолевой активностью нитрозоалкилмочевин:

lg 1/c = - 0,061(lgP) 2 + 0,038lgP + 1,31

Седативная активность барбитуратов, изученная на мышах, связана с липофильностью следующим уравнением:

lg 1/c = 0,928 + 1,763 lgP - 0,327(lgP) 2

Активность, изученная на кроликах, дает несколько другое соотношение:

lg 1/c = 0,602 + 2,221 lgP - 0,326(lgP) 2

Хотя коэффициенты в этих уравнениях разные, общая тенденция сохраняется. Уравнение Хэнча сыграло свою роль при разработке современных компьютерных программ отбора веществ для изучения их биологической активности. В результате скрининга были найдены рассмотренные препараты циметидин и фентоламин. Изучение их механизма действия привело к открытию a-адренорецепторов и Н 2 -рецепторов.

При планировании синтеза ряда новых веществ целесообразно задаваться определенной молекулярно-биологической гипотезой, т.е. приближаться к целенаправленному синтезу. После нахождения in vitro активности соединения обязательно проверяют действие соединения in vivo. На последующих стадиях к будущему препарату предъявляют требования:

1) высокая эффективность лечебного эффекта;

2) максимальная величина I t , минимальное побочное действие;

3) после оказания лечебного действия препарат должен инактивироваться и выводиться из организма;

4) препарат не должен вызывать неприятных ощущений (вкус, запах, внешний вид);

5) препарат должен быть стабильным, минимальный срок хранения препарата должен быть не менее двух лет.

Обычным требованием к синтетическому препарату, за немногими исключениями, является высокая чистота субстанции. Как правило, содержание основного вещества в субстанции должно быть не менее 98 – 99 %. Наличие примесей регламентируется Фармакопейной статьей. При изменении метода синтеза необходимо проверять препарат на биоэквивалентность с ранее применявшимся ЛС.

1.2.2. Разработка плана синтеза

Каждое лекарственное средство может быть синтезировано несколькими альтернативными методами с использованием различных видов исходных продуктов (сырья). Появление новых видов полупродуктов, реакций и технологических процессов может резко изменить метод получения даже известных препаратов. Поэтому необходимо наработать практику составления плана синтеза БАВ на основе знания теории прохождения химических процессов органического синтеза, его конкретных условий и особенностей технологического оформления.

При разработке плана синтеза имеются два основных подхода – синтетический и ретросинтетический. Первый предполагает обычный подход: исходя из известных видов сырья, наметить последовательность реакций. Вторым методом разработки альтернативных путей получения БАВ является ретросинтетический подход к планированию синтеза. Прежде всего для его освоения необходимо привести терминологию:

1. Этот знак Þ трансформация – мысленная операция расчленения молекулы при ретросинтетическом анализе, противоположная знаку реакции.

2. После расчленения молекулы на части возникают заряженные осколки Х + Y¯ - синтоны.

3. Частицам Х + и Y¯ необходимо подобрать реальное химическое соединение, в котором будут либо те же заряды, либо d + , d¯ - синтетические эквиваленты . Синтетический эквивалент – реальное химическое соединение, позволяющее ввести синтон в молекулу в процессе ее конструирования.

4. БАВ – целевое соединение.

Далее, при трансформации необходимо расставить заряды синтонов так, чтобы отрицательный заряд находился на атоме, имеющем более высокую электроотрицательность, а положительный на менее электроотрицательном. В качестве примера можно рассмотреть ретросинтетический анализ молекулы парацетамола.

При трансформации молекулы разрываем связь С-N. Отрицательный заряд остается на группе NH, а положительный – на ацетильной группе. Соответственно синтетическими эквивалентами будут п -аминофенол и уксусный ангидрид или хлористый ацетил. Синтетический подход к разработке плана синтеза показан на схеме. Технический п -аминофенол не годится для получения парацетамола, т. к. содержит до 5 % продуктов окисления и других примесей, а очистка экономически невыгодна. Для синтеза препарата необходимо использовать свежеприготовленный продукт. Он может быть получен восстановлением п -нитрозофенола или п -нитрофенола. Пока в промышленности используют восстановление п -нитрофенола (причины этого рассмотрены в разделе «Реакции нитрозирования»).

В свою очередь п -нитрофенол может быть синтезирован нитрованием фенола или гидролизом п -нитрохлорбензола. В случае нитрования фенола возникают технологические трудности из-за энергичного протекания реакции нитрования, сопровождающегося некоторым осмолением реакционной массы. Кроме того, велики энергозатраты на разделение о- и п -изомеров. Таким образом, наиболее рационально получать п -нитрофенол гидролизом нитрохлорбензола, который является промышленно производимым продуктом. Даже на этом простейшем примере видно, что для ретросинтетического анализа необходимо уверенное знание органических реакций, их механизма, представления об источниках сырья и его доступности. Возможности разработки технологии производства обусловлены условиями проведения реакций, аппаратурным оформлением процессов, вопросами максимального использования сырья, а также вопросами экономики и экологии.

После составления альтернативных планов получения препарата разрабатывают оптимальный метод промышленного синтеза (ОМПС). Разработка ОМПС требует учета следующих факторов:

1) минимальное количество стадий. Каждая стадия – это затраты времени и сырья, увеличение количества отходов. Синтез должен быть по возможности коротким. Желательно использовать реакции, которые осуществляются в одну стадию или, по крайней мере, не требуют выделения промежуточных продуктов;

2) выход на каждой стадии. В идеале выход должен быть количественным (реально – очень редко), но хотя бы максимально возможным. Желательно, чтобы выделение продукта было простым и доступным;

3) хемоселективность реакции. С практической точки зрения имеет исключительное значение проведение реакции по одному из нескольких реакционных центров исходного соединения (региоселективность) или получение одного из возможных стереоизомеров (стереоселективность). Учет этого требования помогает избежать кропотливой работы по разделению изомеров и уменьшает количество отходов производства;

4) условия реакции. Превращение должно протекать в легкодостижимых условиях и не должно сопровождаться использованием или выделением высокопожаро-, взрывоопасных либо токсичных веществ;

5) процесс не должен ни при каких условиях привести к экологической катастрофе;

6) побочные продукты процесса должны быть легко удаляемыми и в идеале должны быть используемы либо легко подвергаться обезвреживанию.

В реальных условиях производства сложность заключается в том, что учет всех этих факторов приводит к противоречивым результатам, и ОМПС становится неоднозначным. Технолог длжен отдать предпочтение тем методам, которые дают максимальный экономический эффект, но без ущерба экологии.


1.3. сырьевая база

химико-фармацевтической промышленности

Основные продукты, которые получают с помощью тонкого, основного, нефтеоргсинтеза, лесохимии, коксохимического и микробиологического производства.

Для планирования синтеза конкретного лекарственного препарата и технологического оформления процессов необходимо в первую очередь обратиться к литературе и выяснить состояние промышленной разработки в нашей стране и за рубежом. Вторым шагом является оценка имеющихся либо вновь разработанных альтернативных методов получения препарата с точки зрения использования различных видов сырья в каждом методе, его стоимость и доступность. Для примера: в синтезе препарата необходимо использовать п -нитрохлорбензол. Его производят на Березниковском химзаводе, Рубежанском химкомбинате (Украина) и фирме Merk (Германия). Стоимость 1 т продукта одинакова, но транспортные расходы весьма отличаются. К тому же необходимо оценить и надежность поставщика. Безусловно, самым надежным будет его производство на своем заводе, но стоимость крупнотоннажного производства, конечно же ниже, чем своего небольшого.

Основные отрасли промышленности, которые поставляют сырье для промышленного получения синтетических ЛС в химико-фармацевтической промышленности (ХФП):

1) химическая переработка каменного угля, нефти, газа, древесины;

2) выделение продуктов из сырья растительного и животного происхож-дения;

3) микробиологический синтез.

Рассмотрим более подробно каждый из источников.

Просмотренно: 12173 | Добавленно: 24 марта 2013

Источниками получения лекарств могут быть:

  • Продукты химического синтеза. В настоящее время большинство лекарств получают именно этим путем. Различают несколько путей изыскания лекарств среди продуктов химического синтеза:
  • Фармакологический скрининг (англ. to screen - просеивать). Метод поиска веществ с определенным типом фармакологической активности среди множества химических соединений синтезированных химиками по специальному заказу. Впервые фармакологический скрининг применил немецкий ученый Домагк, который работал в химическом концерне IG-FI и проводил поиск антимикробных средств среди соединений, синтезированных для крашения тканей. У одного из этих красителей - красного стрептоцида и было обнаружено противомикробное действие. Так были открыты сульфаниламидные средства. Проведение скрининга - чрезвычайно трудоемкий и затратный процесс: для обнаружения одного лекарственного средства исследователю приходится тестировать несколько сотен или тысяч соединений. Так, Пауль Эрлих, при поиске противосифилитических средств изучил около 1000 органических соединений мышьяка и висмута и только 606-й препарат - сальварсан, оказался достаточно эффективным. В настоящее время, для проведения скрининга необходимо синтезировать не менее 10.000 исходных соединений, чтобы с большей долей уверенности полагать, что среди них имеется одно (!) потенциально эффективное лекарственное средство.
  • Молекулярное конструирование лекарств. Создание сканнирующей томографии и рентгенструктурного анализа, развитие компьтерных технологий позволили получать трехмерные изображения активных центров рецепторов и ферментов и подбирать к ним молекулы, конфигурация которых точно соответствует их форме. Молеуклярное конструирование не требует синтеза тысяч соединений и их тестирования. Исследователь сразу создает несколько молекул идеально подходящих к биологическому субстрату. Однако, по своей экономической стоимости данный метод не уступает скринингу. Методом молекулярного конструирования были получены ингибиторы нейраминидазы - новая группа противовирусных препаратов.
  • Воспроизведение биогенных веществ. Таким образом были получены медиаторные средства - адреналин, норадреналин, простагландины; средства с активностью гормонов гипофиза (окситоцин, вазопрессин), щитовидной железы, надпочечников.
  • Целенаправленная модификация молекул с уже известной активностью. Так, например, было установлено, что введение атомов фтора в молекулы лекарств, как правило повышает их активность. Путем фторирования кортизола были созданы мощные глюкокортикоидные препараты, при фторировании хинолонов были получены наиболее активные противомикробные средства - фторхинолоны.
  • Синтез фармакологически активных метаболитов. При изучении метаболизма транквилизатора диазепама было установлено, что в печени из него образуется вещество с транквилизирующей активностью - оксазепам. В настоящее время оксазепам синтезируется и выпускается как отдельное лекарственное средство.
  • Случайные находки («серендипитный» метод). Метод получил свое название по сказке Горация Уолпола «Три принцессы Серендипи». Эти сестры часто совершали удачные открытия и находили решения проблем сами специально не желая того. Примером «серендипитного» получения лекарства является создание пенициллина, которое произошло во многом благодаря тому, что A. Fleming случайно обратил внимание на то, что в заплесневелой чашке, забытой в термостате на Рождество, погибли микроорганизмы. Иногда случайные открытия совершаются в результате ошибки. Так например, ошибочно полагая, что противосудорожное действие фенитоина связано с тем, что он является антагонистом фолиевой кислоты, сотрудники концерна Glaxo Wellcome синтезировали ламотриджин - новое противосудорожное средство. Однако, оказалось что, во-первых, действие фенитоина не связано с фолиевой кислотой, а во-вторых, сам ламотриджин не вмешивается в обмен фолатов.
  • Компоненты растительного сырья. Многие растения содержат вещества, обладающие полезными фармакологическими свойствами, причем до настоящего времени продолжается открытие все новых и новых соединений. Широко известными примерами лекарственных средств, полученных из лекарственного растительного сырья являются морфин, выделенный из опийного мака (Papaver somniferum ), атропин, полученный из красавки (Atropa belladonna ).
  • Ткани животных. Из тканей животных получают некоторые гормональные препараты - инсулин из тканей поджелудочной железы свиней, эстрогены из мочи жеребцов, ФСГ из мочи женщин.
  • Продукты жизнедеятельности микроорганизмов. Ряд антибиотиков, средства для лечения атеросклероза из группы статинов получают из культуральной жидкости различных грибков и бактерий.
  • Минеральное сырье. Из попутных продуктов нефтеперегонки получают вазелин, используемый в качестве мазевой основы.

Каждое лекарственное средство до того, как начнет применяться в практической медицине должно пройти определенную процедуру изучения и регистрации, которая гарантировала бы, с одной стороны эффективность лекарства при лечении данной патологии, а с другой стороны - его безопасность. Внедрение лекарственных средств делят на ряд этапов (см. таблицу 1).

На схеме 2 показаны основные этапы движения лекарства в процессе его разработки и изучения. После завершения III фазы клинических испытаний документация вновь поступает в Фармакологический комитет (объем полного досье может составлять до 1 млн. страниц) и в течение 1-2 лет регистрируется в Государственном реестре лекарственных средств и изделий медицинского назначения. Только после этого фармакологический концерн имеет право начать промышленный выпуск лекарственного средства и его распространение через аптечную сеть.
Таблица 1. Краткая характеристика основных этапов при разработке новых лекарств.

Этап Краткая характеристика
Доклинические испытания (»4 года)

После завершения материалы передаются для экспертизы в Фармакологический комитет, который санкционирует проведение клинических испытаний.

  • Исследование in vitro и создание лекарственной субстанции;
  • Исследования на животных (не менее чем на 2 видах, один из которых - не грызуны). Программа исследований:
    • Фармакологический профиль лекарства (механизм действия, фармакологические эффекты и их селективность);
    • Острая и хроническая токсичность лекарства;
    • Тератогенное действие (ненаследуемые дефекты в потомстве);
    • Мутагенное действие (наследуемые дефекты в потомстве);
    • Канцерогенное действие (опухолевая трансформация клетки).
Клинические испытания (»8-9 лет)
Включают 3 фазы. Экспертиза документации Фармакологическим комитетом проводится после завершения каждой фазы. Лекарство может быть отозвано на любом этапе.
  • ФАЗА I. ЯВЛЯЕТСЯ ЛИ ВЕЩЕСТВО БЕЗОПАСНЫМ? Исследуют фармакокинетику и зависимость эффекта лекарства от его дозы на небольшом числе (20-50 человек) здоровых добровольцев.
  • ФАЗА II. ОКАЗЫВАЕТ ЛИ ВЕЩЕСТВО ДЕЙСТВИЕ В ОРГАНИЗМЕ ПАЦИЕНТА? Выполняют на ограниченном числе пациентов (100-300 человек). Определяют переносимость терапевтических доз больным человеком и ожидаемые нежелательные эффекты.
  • ФАЗА III. ЯВЛЯЕТСЯ ЛИ ВЕЩЕСТВО ЭФФЕКТИВНЫМ? Выполняют на большом числе пациентов (не менее 1.000-5.000 человек). Определяют степень выраженности эффекта, уточняют нежелательные эффекты.

Схема 2. Основные этапы исследования и внедрения лекарства в медицинскую практику.
Однако, параллельно с продажей лекарства фармацевтический концерн организует IV фазу клинических испытаний (постмаркетинговые исследования). Цель этой фазы - выявить редко встречающиеся, но потенциально опасные нежелательные эффекты лекарства. Участниками этой фазы являются все практикующие врачи, которые назначают лекарство и пациенту, которые его применяют. При обнаружении серьезных недостатков лекарство может быть отозвано концерном. Например, после того как новый фторхинолон третьего поколения грепафлоксацин успешно прошел все этапы испытаний и поступил в продажу фирма-производитель отозвала лекарство менее чем через год. В ходе постмаркетинговых исследований было обнаружено, что грепафлоксацин может быть причиной летальных аритмий.
При организации и проведении клинических испытаний должны выполняться следующие требования:

  • Исследование должно быть контролируемым - т.е. параллельно с группой принимающей исследуемое лекарство, должна быть набрана группа, которая получает стандартный препарат сравнения (позитивный контроль) или неактивный препарат, который внешне имитирует изучаемое лекарство (плацебо контроль). Это необходимо для того, чтобы исключить элемент самовнушения при лечении данным лекарством. В зависимости от вида контроля различают:
    • Простое слепое исследование: пациент не знает, что он принимает - новое лекарство или контрольный препарат (плацебо).
    • Двойное слепое исследование: и пациент, и врач, который выдает препараты и оценивает их эффект не знают, что получает пациент - новое лекарство или контрольный препарат. Информацией об этом обладает только руководитель исследования.
    • Тройное слепое исследование: ни пациент, ни врач и руководитель исследования не знают, какая группа получает лечение новым лекарство, а какая контрольными средствами. Информация об этом находится у независимого наблюдателя.
  • Исследование должно быть рандомизированным - т.е. однородная группа пациентов должна быть случайным образом разделена на экспериментальную и контрольную группу.
  • Исследование должно быть организовано с соблюдением всех этических норм и принципов, которые изложены в Хельсинской декларации.

В среднем на все исследования и разработки, необходимые для того, чтобы новый лекарственный препарат был доступен для пациентов, уходит более 12 лет и более 1 миллиарда евро.

— это рисковый бизнес. Большинство разрабатываемых соединений (около 98 %) так и не выходят на рынок. Так происходит, потому что при сравнении преимуществ и рисков (негативных побочных эффектов), обнаруживаемых в ходе разработки новых препаратов, сложно обнаружить превосходства в сравнении с уже имеющимися на рынке препаратами.

Процесс разработки нового лекарственного препарата можно представить в 10 шагах. Следующая статья описывает 1-й шаг. Предварительные исследования.

Описание процесса разработки медицинского препарата


Шаг 1: Предварительные исследования

Определение наличия «неудовлетворенной потребности». ». На этапе предварительного исследованиянаучные сотрудники в учебных заведениях (университетах) и участники отрасли (фармацевтические компании) проводят работу по изучению заболевания.

Неудовлетворенная потребность имеется тогда, когда для лечения определенного заболевания либо

  • не имеется подходящих препаратов либо
  • препарат имеется, но он вызывает у некоторых пациентов непереносимые , которые делают прием ими препарата невозможным.

В процессе исследований и разработки используется большое количество ресурсов и денежных средств. Бывает, что компании начинают работать над удовлетворением потребности только тогда, когда для этого есть коммерческое обоснование. Дело в том, что компаниям необходима прибыль от новых препаратов, чтобы покрыть расходы на их разработку и инвестировать средства в проекты, связанные с новыми лекарственными препаратами. Существует множество неудовлетворенных потребностей в новых препаратах, по которым в настоящее время не ведется никаких разработок. Европейскому законодательству это известно, и оно с помощью льгот и стимулов старается поощрять разработку препаратов для лечения более сложных заболеваний, например, редких и детских заболеваний.

Основные этапы разработки препаратов показаны на рисунке. Важным этапом является подача заявки на согласование препарата контрольно-надзорными органами и получение такого согласования. Его необходимо пройти до того, как препарат появляется на рынке (в продаже). Однако успешное согласование зависит не от компании-производителя.

Для каждого этапа разработки лекарственных препаратов требуется некое соглашение относительно финансовых средств (инвестиций) и людских ресурсов — это называется «инвестиционное решение». В дальнейшем необходимо изучить результаты каждого шага, прежде чем перейти к следующему. На протяжении всего процесса разработки повторяется схема «инвестиционное решение — работа — результат — инвестиционное решение» . Если результаты одного из шагов разработки оказываются неудовлетворительными, проект закрывается. В таких случаях финансовые и человеческие ресурсы используются в других проектах.

Справочная литература

  1. Edwards, L., Fox, A., & Stonier, P. (Eds.). (2010). Principles and practice of pharmaceutical medicine (3rd ed.). Oxford: Wiley-Blackwell.

Приложения

  • Информационный бюллетень Поиск новых препаратов
    Size: 1,247,915 bytes, Format: .docx
    Поиск новых препаратов. В этом информационном бюллетене описываются этапы поиска новых препаратов и процесс разработки, которые происходят до момента, когда вещество может испытываться на людях — от предварительного этапа (сбора информации о заболевании) до доклинических исследований на безопасность с использованием животных.

ЭТАПЫ СОЗДАНИЯ НОВЫХ ЛЕКАРСТВЕННЫХ СРЕДСТВ

Разработка новых лекарственных средств осуществляется совместными уси­лиями многих отраслей науки, при этом основная роль принадлежит специа­листам в области химии, фармакологии, фармации.

Создание нового лекарст­венного средства представляет собой ряд последовательных этапов, каждый из которых должен отвечать определœенным положениям и стандартам, утвержден­ным государственными учреждениями - Фармакопейным Комитетом, Фармако­логическим Комитетом, Управлением МЗ РБ по внедрению новых лекарствен­ных средств.

Процесс создания новых лекарственных средств выполняется в соответствии с международными стандартами - GLP (Good Laboratory Practice - Качествен­ная лабораторная практика), GMP (Good Manufacturing Practice - Качественная производственная практика) и GCP (Good Clinical Practice - Качественная кли­ническая практика).

Знаком соответствия разрабатываемого нового лекарственного средства этим стандартам является официальное разрешение процесса их дальнейшего иссле­дования - IND (Investigation New Drug).

ПЕРВЫЙ ЭТАП - получение новой активной субстанции (действующего вещества или комплек­са веществ) идет по трем основным направлениям:

1. ХИМИЧЕСКИЙ СИНТЕЗ

· Эмпирический путь: скрининг, случайные находки;

· Направленный синтез: воспроизведение структуры эндогенных веществ, хи­мическая модификация известных молекул;

· Целœенаправленный синтез (рациональный дизайн химического соединœения), основанный на понимании зависимости «химическая структура - фармакологи­ческое действие».

Эмпирический путь (от греч. empeiria - опыт) создания лекарственных веществ основан на методе «проб и ошибок», при котором фармакологи берут ряд хими­ческих соединœений и определяют с помощью набора биологических тестов (на молекулярном, клеточном, органном уровнях и на целом животном) наличие или отсутствие у них определœенной фармакологической активности. Так, наличие противомикробной активности определяют на микроорганизмах. Затем среди исследуемых химических соединœе­ний выбирают наиболее активные и сравнивают степень их фармакологической активности и токсичности с существующими лекарственными средствами, кото­рые используются в качестве стандарта. Такой путь отбора активных веществ получил название лекарственного скрининга (от англ. screen - отсеивать, сорти­ровать). Ряд препаратов был внедрен в медицинскую практику в результате слу­чайных находок.

Направленный синтез состоит в получении соединœе­ний с определœенным видом фармакологической активности. Первый этап такого синтеза заключается в воспроизведении веществ, образующихся в живых организмах. Так были синтезированы адреналин, норадреналин, ряд гормонов, простагландины, витамины. Затем химическая модификация известных молекул позволяет создать лекарствен­ные вещества, обладающие более выраженным фармакологическим эффектом и меньшим побочным действием.

Целœенаправленный синтез лекарственных веществ подразумевает создание веществ с заранее заданными фармакологическими свойствами.

2. ВЫДЕЛЕНИЕ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ ИЗ ТКАНЕЙ И ОРГАНОВ ЖИВОТНЫХ, РАСТЕНИЙ И МИНЕРАЛОВ

Таким путем выделœены лекарственные вещества или комплексы веществ: гор­моны; галеновы, новогаленовы препараты, органопрепараты и минœеральные ве­щества.

3. ВЫДЕЛЕНИЕ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ, ЯВЛЯЮЩИХСЯ ПРОДУКТАМИ ЖИЗНЕДЕЯТЕЛЬ­НОСТИ ГРИБОВ И МИКРООРГАНИЗМОВ, МЕТОДАМИ БИОТЕХНОЛОГИИ (клеточной и генной инженерии)

Выделœением лекарственных веществ, являющихся продуктами жизнедеятель­ности грибов и микроорганизмов, занимается биотехнология.

Биотехнология использует в промышленном масштабе биологические систе­мы и биологические процессы. Обычно применяются микроорганизмы, культу­ры клеток, культуры тканей растений и животных.

Биотехнологическими методами получают полусинтетические антибиотики. Большой интерес представляет получение в промышленном масштабе инсулина человека методом генной инженерии.

ВТОРОЙ ЭТАП

После получения новой активной субстанции и определœения ее базовых фар­макологических свойств она проходит ряд доклинических исследований.

Известно, что в процессе создания новых лекарственных средств, как правило, имеет место наличие двух основных определяющих факторов - объективного и субъективного. Каждый из этих факторов по-своему важен, но только при наличии однонаправленности их силовых векторов можно достичь конечной цели любого фармацевтического изыскания - получения нового лекарственного средства.

Субъективный фактор определяется прежде всего желанием исследователя заниматься научной проблемой, его эрудицией, квалификацией и научным опытом. Объективная же сторона процесса связана с выделением приоритетных и перспективных научно-исследовательских направлений, способных повлиять на уровень качества жизни (т.е. на QoL-индекс), а также с коммерческой привлекательностью.

Детальное рассмотрение субъективного фактора в конечном итоге сводится к поиску ответа на один из наиболее интригующих философских вопросов: какое место было отведено Его Величеству Случаю в том, что именно этот исследователь (или группа исследователей) оказался в нужное время и в нужном месте, чтобы иметь отношение к разработке того или иного конкретного препарата? Одним из ярких исторических примеров значимости этого фактора является история открытия А. Флемингом антибиотиков и лизоцима. В связи с этим заведующий лабораторией, в которой работал Флеминг, писал: «Несмотря на все мое уважение к отцу английских антибиотиков, должен заметить, что ни один уважающий себя лаборант, а тем более ученый-бактериолог, никогда не позволил бы себе иметь для проведения экспериментов чашку Петри такой чистоты, в которой бы могла завестись плесень». И если учесть тот факт, что создание пенициллина пришлось на 1942 год, т.е. на самый разгар Второй мировой войны и, следовательно, на пик инфекционных осложнений от огнестрельных ранений в госпиталях, когда человечество как никогда нуждалось в появлении высокоэффективного антибактериального препарата, невольно приходит мысль о провидении.

Что же касается объективного фактора, то его понимание в большей степени поддается логическому причинно-следственному анализу. А это значит, что на этапе разработки нового препарата на первый план выступают критерии, определяющие направления научных изысканий. Первостепенным фактором в этом процессе является острая медицинская необходимость или возможность разработать новое либо улучшить старое лечение, что в конечном итоге сможет повлиять на качество жизни. Наглядный пример — разработка новых эффективных противоопухолевых, сердечно-сосудистых, гормональных препаратов, средств борьбы с ВИЧ-инфекцией. Своевременно будет напомнить, что показателем уровня качества жизни являются физическое и эмоциональное состояние человека, интеллектуальная деятельность, чувство благополучия и удовлетворенности жизнью, социальная активность и степень ее удовлетворения. Следует отметить, что QoL-индекс напрямую связан с тяжестью заболевания, которая и определяет финансовые затраты общества на госпитализацию, уход за больными, стоимость курса терапии, лечение хронической патологии.

Коммерческая привлекательность препарата обусловлена уровнем заболеваемости конкретной патологией, степенью ее тяжести, величиной расходов на лечение, величиной выборки пациентов, страдающих данным заболеванием, длительностью курса терапии, возрастом больных и т.д. Кроме того, существует ряд нюансов, связанных с материально-техническими и финансовыми возможностями разработчика и будущего производителя. Это определяется тем, что, во-первых, большую часть средств, выделенных на научные исследования, разработчик тратит на поддержание завоеванных и наиболее сильных позиций на рынке (где он уже, как правило, является лидером); во-вторых, во главу угла разработки нового препарата ставится соотношение между предполагаемыми затратами и реальными цифрами прибыли, которую разработчик рассчитывает получить от продажи препарата, а также временным соотношением этих двух параметров. Так, если в 1976 г. фармацевтические компании тратили на исследования и выпуск нового препарата в среднем около 54 млн $, то уже в 1998 г. — почти 597 млн $.

Процесс разработки и продвижения на рынок нового препарата составляет в среднем 12-15 лет. Рост затрат на разработку новых лекарственных средств связан с ужесточением требований общества к качеству и безопасности фармацевтических средств. Кроме того, если сравнивать расходы на исследования и разработки в фармацевтической промышленности с другими видами прибыльного бизнеса, в частности с радиоэлектроникой, то оказывается, что они больше в 2 раза, а в сравнении другими отраслями промышленности — в 6 раз.

Методология изыскания новых лекарственных средств

В недалеком прошлом основным методом изыскания новых лекарственных средств был элементарный эмпирический скрининг уже имеющихся или вновь синтезированных химических соединений. Естественно, «чистого» эмпирического скрининга в природе быть не может, так как любое исследование в конечном итоге базируется на ранее накопленном фактическом, экспериментальном и клиническом материале. Ярким историческим примером такого скрининга является поиск противосифилитических средств, проведенный П. Эрлихом среди 10 тысяч соединений мышьяка и закончившийся созданием препарата сальварсан.

Современные высокотехнологические подходы подразумевают использование НTS-метода (High Through-put Screening), т.е. метода эмпирического конструирования нового высокоэффективного лекарственного соединения. На первом этапе с помощью высокоскоростной компьютерной технологии сотни тысяч веществ проверяются на активность относительно исследуемой молекулы (чаще всего под этим подразумевается молекулярная структура рецептора). На втором этапе происходит непосредственное моделирование структурной активности с помощью специальных программ типа QSAR (Quantitative Structure Activity Relationship). Конечный итог этого процесса — создание вещества, обладающего высочайшим уровнем активности при минимальных побочных эффектах и материальных затратах. Моделирование может протекать по двум направлениям. Первое - конструирование идеального «ключа» (т.е. медиатора), подходящего под естественный природный «замок» (т.е. рецептор). Второе - конструирование «замка» под имеющийся естественный «ключ». Научные подходы, применяющиеся для этих целей, базируются на разнообразных технологиях, начиная с методов молекулярной генетики и ЯМР и заканчивая непосредственным компьютерным моделированием активной молекулы в трехмерном пространстве с помощью программ типа CAD (Computer Assisted Design). Однако в конечном итоге процесс конструирования и синтеза потенциальных биологически активных веществ основывается все-таки на интуиции и опыте исследователя.

Как только перспективное химическое соединение синтезировано, а его структура и свойства установлены, приступают к доклиническому этапу испытаний на животных. Он включает описание процесса химического синтеза (приводятся данные о структуре и чистоте препарата), экспериментальную фармакологию (т.е. фармакодинамику), изучение фармакокинетики, метаболизма и токсичности.

Выделим основные приоритеты доклинического этапа. Для фармакодинамики — это исследование специфической фармакологической активности препарата и его метаболитов (включая определение скорости, продолжительности, обратимости и дозозависимости эффектов на модельных опытах in vivo , лиганд-рецепторные взаимодействия, влияние на основные физиологические системы: нервную, костно-мышечную, мочеполовую и сердечно-сосудистую); для фармакокинетики и метаболизма — это изучение всасывания, распределения, связывания с белками, биотрансформации и выведения (включая расчеты констант скорости элиминации (Kel), абсорбции (Ka), экскреции (Kex), клиренса препарата, площади под кривой концентрация-время и т.д.); для токсикологии — это определение острой и хронической токсичности (не менее чем на двух видах экспериментальных животных), канцерогенности, мутагенности, тератогенности.

Опыт показывает, что во время тестирования примерно половина веществ-кандидатов отбраковывается именно вследствие низкой стабильности, высокой мутагенности, тератогенности и т.д. Доклинические исследования, так же как и клинические, условно можно разделить на четыре фазы (этапа):

Доклинические исследования (I этап) (Отбор перспективных субстанций)

1. Оценка патентных возможностей и подача заявления на получение патента.

2. Основной фармакологический и биохимический скрининг.

3. Аналитическое изучение активной субстанции.

4. Токсикологические исследования с целью определения максимально переносимых доз.

Доклинические исследования (II этап) (Фармакодинамика/кинетика у животных)

1. Детальные фармакологические исследования (основное действие, нежелательные реакции, длительность действия).

2. Фармакокинетика (всасывание, распределение, метаболизм, выведение).

Доклинические исследования (III этап) (Оценка безопасности)

1. Острая токсичность (однократное введение двум видам животных).

2. Хроническая токсичность (многократное введение двум видам животных).

3. Исследование токсичности по действию на репродуктивную систему (фертильность, тератогенность, пери- и постнатальная токсичность).

4. Исследование мутагенности.

5. Воздействие на иммунную систему.

6. Кожно-аллергические реакции.

Доклинические исследования (IV этап) (Ранняя техническая разработка)

1. Синтез в условиях производства.

2. Разработка аналитических методов для определения препарата, продуктов распада и возможного загрязнения.

3. Синтез препарата, меченного радиоактивными изотопами для фармакокинетического анализа.

4. Исследование стабильности.

5. Производство лекарственных форм для клинических исследований.

После того, как на основании необходимых доклинических исследований получены доказательства безопасности и терапевтической эффективности препарата, а также возможности проведения контроля качества, разработчики оформляют и направляют заявку в разрешающие и регулирующие инстанции на право выполнения клинических испытаний. В любом случае, прежде чем разработчик получит разрешение на проведение клинических испытаний, он должен представить в разрешительные органы заявку, содержащую следующую информацию: 1) данные о химическом составе лекарственного препарата; 2) отчет о результатах доклинических исследований; 3) процедуры получения вещества и контроль качества на производстве; 4) любую другую имеющуюся информацию (в том числе клинические данные из других стран, если таковые имеются); 5) описание программы (протокола) предлагаемых клинических исследований.

Таким образом, испытания среди людей можно начинать только в том случае, если соблюдены следующие основные требования: информация о доклинических испытаниях убедительно показывает, что препарат может быть использован при лечении данной конкретной патологии; план клинических испытаний разработан адекватно и, следовательно, клинические испытания могут обеспечить надежную информацию об эффективности и безопасности препарата; препарат достаточно безопасен для испытания на людях и испытуемые не будут подвергнуты неоправданному риску.

Схематично переходный этап от доклинических исследований к клиническим можно представить следующим образом:

Программа клинических испытаний нового лекарственного средства на человеке состоит из четырех фаз. Первые три проводятся до регистрации препарата, а четвертая, которая называется пострегистрационной, или постмаркетинговой, проводится после того, как препарат зарегистрирован и разрешен к применению.

1-я фаза клинических испытаний. Часто эта фаза называется также медико-биологической, или клинико-фармакологической, что более адекватно отражает ее цели и задачи: установить переносимость и фармакокинетические характеристики препарата на человеке. Как правило, в 1-й фазе клинических испытаний (КИ) принимают участие здоровые добровольцы в количестве от 80 до 100 человек (в наших условиях обычно 10-15 молодых здоровых мужчин). Исключение составляют испытания противоопухолевых препаратов и средств борьбы со СПИДом из-за их высокой токсичности (в данных случаях испытания сразу же проводятся на больных этими заболеваниями). Следует отметить, что на 1-й фазе КИ отсеивается в среднем около 1/3 веществ-кандидатов. Фактически 1-я фаза КИ должна ответить на главный вопрос: стоит ли продолжать работу над новым препаратом, и если да, то каковы будут предпочтительные терапевтические дозы и способы введения?

2-я фаза клинических испытаний — первый опыт применения нового препарата для лечения конкретной патологии. Часто эту фазу называют пилотными, или пристрелочными, исследованиями, так как полученные в ходе этих испытаний результаты позволяют обеспечить планирование более дорогих и обширных исследований. Во 2-ю фазу включаются как мужчины, так и женщины в количестве от 200 до 600 человек (в том числе женщины детородного возраста, если они предохраняются от беременности и проведены контрольные тесты на беременность). Условно эту фазу подразделяют на 2а и 2б. На первом этапе фазы решается задача определения уровня безопасности препарата на отобранных группах пациентов с конкретным заболеванием или синдромом, который необходимо лечить, тогда как на втором этапе выбирается оптимальный уровень дозы препарата для последующей, 3-й фазы. Естественно, что испытания 2-й фазы являются контролируемыми и подразумевают наличие контрольной группы, которая не должна существенно отличаться от опытной (основной) ни по полу, ни по возрасту, ни по исходному фоновому лечению. Следует подчеркнуть, что фоновое лечение (если это возможно) должно быть прекращено за 2-4 недели до начала испытания. Кроме того, группы должны формироваться с использованием рандомизации, т.е. способом случайного распределения с применением таблиц случайных чисел.

3-я фаза клинических испытаний - это клинические исследования безопасности и эффективности препарата в условиях, приближенных к тем, в которых он будет использоваться в случае его разрешения к медицинскому применению. То есть в ходе 3-й фазы изучают значимые взаимодействия между исследуемым препаратом и другими лекарственными средствами, а также влияние возраста, пола, сопутствующих заболеваний и т.д. Как правило, это слепые плацебо-контролируемые исследования, в процессе которых проводят сравнение курсов лечения со стандартными препаратами. Естественно, в данной фазе КИ принимает участие большое количество пациентов (до 10 тыс. чел.), что позволяет уточнить особенности действия препарата и определить относительно редко встречающиеся побочные реакции при длительном его применении. При проведении 3-й фазы КИ анализируются также фармакоэкономические показатели, использующиеся в дальнейшем для оценки уровня качества жизни пациентов и их обеспеченности медицинской помощью. Информация, полученная в результате исследований 3-й фазы, является основополагающей для принятия решения о регистрации лекарства и возможности его медицинского применения.

Таким образом, рекомендация препарата к клиническому использованию считается обоснованной, если он более эффективен; обладает лучшей переносимостью, чем известные препараты; более выгоден экономически; имеет более простую и удобную методику лечения; повышает эффективность уже существующих лекарственных средств при комбинированном лечении. Тем не менее, опыт разработки лекарственных средств показывает, что только около 8 % препаратов, получивших разрешение на разработку, допускаются к медицинскому применению.

4-я фаза клинических испытаний - это так называемые постмаркетинговые, или пострегистрационные, исследования, проводимые после получения разрешения регуляторных органов на медицинское применение препарата. Как правило, КИ идут по двум основным направлениям. Первое — усовершенствование схем дозирования, сроков лечения, изучение взаимодействия с пищей и другими лекарствами, оценка эффективности в различных возрастных группах, сбор дополнительных данных, касающихся экономических показателей, изучение отдаленных эффектов (в первую очередь влияющих на снижение или повышение уровня смертности пациентов, получающих данный препарат). Второе — изучение новых (не зарегистрированных) показаний для назначения препарата, методов его применения и клинических эффектов при комбинации с другими лекарственными средствами. Следует заметить, что второе направление 4-й фазы рассматривается как испытание нового препарата на ранних фазах изучения.

Схематично все вышесказанное представлено на рисунке.

Виды и типы клинических испытаний: план, дизайн и структура

Основным критерием в определении вида клинических испытаний является наличие или отсутствие контроля. В связи с этим все КИ можно разделить на неконтролируемые (несравнительные) и контролируемые (с наличием сравнительного контроля). В то же время судить о причинно-следственной связи между каким-либо воздействием на организм и ответной реакцией можно только на основании сравнения с результатами, полученными в контрольной группе.

Естественно, результаты неконтролируемых и контролируемых исследований качественно отличаются. Однако это не означает, что неконтролируемые исследования вообще не нужны. Как правило, они предназначены для выявления связей и закономерностей, которые затем доказываются контролируемыми исследованиями. В свою очередь, неконтролируемые исследования оправданы на 1-й и 2-й фазах испытаний, когда изучается токсичность у человека, определяются безопасные дозы, проводятся «пилотные» исследования, чисто фармакокинетические, а также длительные постмаркетинговые испытания, направленные на выявление редких побочных эффектов.

В то же время испытания 2-й и 3-й фаз, направленные на доказательство определенного клинического эффекта и анализ сравнительной эффективности различных методов лечения, по определению должны быть сравнительными (т.е. имеющими контрольные группы). Таким образом, наличие контрольной группы является основополагающим моментом для сравнительного (контролируемого) исследования. В свою очередь, контрольные группы классифицируются по типу назначения лечения и по способу отбора. По типу назначения лечения группы подразделяют на подгруппы, получающие плацебо, не получающие лечение, получающие различные дозы препарата или различные режимы лечения и получающие иной активный препарат. По способу отбора больных в контрольную группу различают отбор с рандомизацией из той же популяции и «внешний» («исторический»), когда популяция отличается от популяции данного испытания. Для сведения к минимуму погрешности при формирования групп используют также метод слепого исследования и рандомизацию со стратификацией.

Рандомизацией называется способ назначения испытуемых в группы методом случайной выборки (желательно с использованием компьютерных кодов на основании последовательности случайных чисел), тогда как стратификация - это процесс, который гарантирует равномерное распределение испытуемых по группам с учетом факторов, существенно влияющих на исход заболевания (возраст, избыточный вес, анамнез и т.д.).

Слепое исследование предполагает, что испытуемый не знает о методе лечения. При двойном слепом методе о проводимом лечении не знает и исследователь, но знает монитор. Существует и так называемый метод «тройного ослепления», когда о методе лечения не знает и монитор, но знает только спонсор. Немалое влияние на качество проведения исследования оказывает комплаентность , т.е. строгость следования режиму испытания со стороны испытуемых.

Так или иначе, для качественного проведения клинических исследований необходимо наличие грамотно составленного плана и дизайна испытания с четким определением критериев включения/исключения в исследование и клинической релевантности (значимости).

Элементы дизайна стандартного клинического исследования представлены следующим образом: наличие медицинского вмешательства; наличие группы сравнения; рандомизация; стратификация; использование маскировки. Однако, несмотря на наличие в дизайне целого ряда общих моментов, его структура будет различаться в зависимости от целей и фазы клинического испытания. Ниже представлена структура наиболее часто применяемых в клинических испытаниях типовых моделей исследования.

1) Схема модели исследования в одной группе: все исследуемые получают одно и то же лечение, однако его результаты сравниваются не с результатами контрольной группы, а с результатами исходного состояния для каждого пациента или с результатами контроля по архивной статистике, т.е. испытуемых не рандомизируют. Следовательно, данная модель может использоваться на 1-й фазе исследований или служить дополнением к другому типу исследований (в частности, для оценки антибиотикотерапии). Таким образом, основным недостатком модели является отсутствие группы контроля.

2) Схема модели исследования в параллельных группах: испытуемые двух или более групп получают различные курсы лечения или различные дозы лекарственных средств. Естественно, в этом случае проводится рандомизация (чаще со стратификацией). Данный вид модели считается наиболее оптимальным для определения эффективности схем лечения. Следует отметить, что большинство клинических испытаний проводится в параллельных группах. Более того, регулирующие органы отдают предпочтение именно этому типу КИ, поэтому основные исследования 3-й фазы тоже проводят в параллельных группах. Недостатком данного вида испытаний является то, что они требуют большего количества пациентов и, следовательно, больших затрат; длительность проведения исследований по этой схеме значительно увеличивается.

3) Схема перекрестной модели: испытуемых рандомизируют в группы, в которых проводят одинаковое курсовое лечение, но с различной последовательностью. Как правило, между курсами требуется ликвидационный (отмывочный, washout) период, равный пяти периодам полувыведения, для того чтобы пациенты смогли вернуться к исходным показателям. Обычно «перекрестные модели» используются при изучении фармакокинетики и фармакодинамики, поскольку они более выгодны экономически (требуют меньшего числа пациентов), а также в случаях, когда клинические условия относительно постоянны в течение периода исследования.

Таким образом, на протяжении всего этапа клинических испытаний, начиная с момента планирования и заканчивая интерпретацией полученных данных, одно из стратегических мест занимает статистический анализ. Учитывая многообразие нюансов и специфику проведения КИ, трудно обойтись без специалиста по специфическому биологическому статистическому анализу.

Биоэквивалентные клинические исследования

Врачам-клиницистам хорошо известно, что препараты, имеющие одни и те же активные вещества, но выпускаемые различными фирмами-производителями (так называемые препараты-генерики), существенно отличаются по своему терапевтическому эффекту, а также по частоте и выраженности побочных явлений. В качестве примера можно привести ситуацию с диазепамом для парентерального введения. Так, неврологи и реаниматологи, работавшие в 70—90-х годах, знают, что для того, чтобы купировать судороги или провести вводный наркоз, пациенту достаточно было ввести в/в 2-4 мл седуксена (т.е. 10—20 мг диазепама), выпускаемого фирмой «Гедеон Рихтер» (Венгрия), тогда как для достижения того же клинического эффекта порой недостаточно было и 6-8 мл реланиума (т.е. 30—40 мг диазепама), выпускаемого фирмой «Польфа» (Польша). Для купирования абстинентного синдрома из всех «диазепамов» для парентерального введения наиболее пригодным являлся апаурин производства фирмы KRKA (Словения). Такого рода феномен, а также значительные экономические выгоды, связанные с производством препаратов-генериков, легли в основу разработки и стандартизации биоэкивалентных исследований и связанных с ними биологических и фармакокинетических понятий.

Следует дать определение ряду терминов. Биоэквивалентность - это сравнительная оценка эффективности и безопасности двух препаратов при одинаковых условиях введения и в одинаковых дозах. Один их этих препаратов является эталоном, или препаратом сравнения (как правило, это широко известное оригинальное лекарственное средство или препарат-генерик), а другой — исследуемый препарат. Основным параметром, который изучают в биоэквивалентных клинических исследованиях, является биологическая доступность (биодоступность) . Чтобы понять значимость этого феномена, можно вспомнить ситуацию, достаточно часто встречающуюся при проведении антибиотикотерапии. Перед назначением антибиотиков определяют чувствительность к ним микроорганизмов in vitro . К примеру, чувствительность к цефалоспоринам in vitro может оказаться на порядок (т.е. в 10 раз) выше, нежели к обыкновенному пенициллину, тогда как при проведении терапии in vivo клинический эффект оказывается выше у того же пенициллина. Таким образом, биодоступность — это скорость и степень накопления активной субстанции в месте ее предполагаемого действия в организме человека.

Как было сказано выше, проблема биоэквивалентности лекарственных препаратов имеет большое клиническое, фармацевтическое и экономическое значение. Во-первых, одно и то же лекарственное средство выпускается различными фирмами с применением различных вспомогательных веществ, в различных количествах и по различным технологиям. Во-вторых, применение препаратов-генериков во всех странах связано с существенной разницей в стоимости между оригинальными препаратами и генерическими лекарственными средствами. Так, общая стоимость продаж генериков в Великобритании, Дании, Нидерландах на рынке рецептурных лекарственных средств составила в 2000 г. 50-75% всех продаж. Здесь же уместно будет привести определение препарата-генерика в сравнении с оригинальным лекарственным средством: генерик - это лекарственный аналог оригинального препарата (произведенный другой фирмой, не являющейся патентодержателем), срок действия патентной защиты которого уже закончился. Характерно, что генерическое лекарственное средство содержит идентичное оригинальному препарату действующее вещество (активную субстанцию), но отличается вспомогательными (неактивными) ингредиентами (наполнителями, консервантами, красителями и т.д.).

Проведен ряд конференций с целью разработки и стандартизации документов по оценке качества генерических препаратов. В итоге приняты правила по проведению исследований биоэквивалентности. В частности, для ЕС это «Государственные правила по медицинской продукции в Европейском Союзе» (последняя редакция принята в 2001 г.); для США подобные правила были приняты в последней редакции 1996 г.; для России - 10.08.04 г. вступил в силу приказ МЗ РФ «О проведении качественных исследований биоэквивалентности лекарственных средств»; для РБ - это Инструкция № 73-0501 от 30.05.01 г. «По регистрационным требованиям и правилам проведения эквивалентности генерических лекарственных средств».

Учитывая ряд положений из этих основополагающих документов, можно констатировать, что лекарственные препараты считаются биоэквивалентными, если они фармацевтически эквивалентны, а их биодоступность (т.е. скорость и степень абсорбции активного вещества) одинакова и после назначения они в одинаковой дозе могут обеспечить должную эффективность и безопасность.

Естественно, выполнение исследований по биоэквивалентности должно соответствовать принципам GCP. Однако проведение клинических испытаний по биоэквивалентности имеет ряд особенностей. Во-первых, исследования должны выполняться с участием здоровых, предпочтительно некурящих добровольцев обоего пола в возрасте 18-55 лет, с представлением точных критериев включения/исключения и иметь соответствующий дизайн (контролируемых, перекрестных клинических исследований с рандомизированным распределением добровольцев). Во-вторых, минимальное число испытуемых — не менее 12 человек (обычно 12-24). В-третьих, возможность участвовать в исследовании должна подтверждаться стандартными лабораторными тестами, сбором анамнеза и общеклинического обследования. Причем как до, так и в процессе испытания могут проводиться специальные медицинские обследования, зависящие от особенностей фармакологических свойств изучаемого препарата. В-четвертых, для всех испытуемых должны быть созданы соответствующие стандартные условия на период проведения исследований, в том числе стандартная диета, исключение приема других лекарственных средств, одинаковый двигательный режим и режим дня, режим физической активности, исключение алкоголя, кофеина, наркотических веществ и концентрированных соков, время пребывания в исследовательском центре и время окончания испытания. Причем необходимо исследование биодоступности как при введении однократной дозы изучаемого препарата, так и при достижении стабильного состояния (т.е. стабильной концентрации препарата в крови).

Из фармакокинетических параметров, используемых для оценки биодоступности, обычно определяют максимум концентрации лекарственного вещества (C max); время достижения максимального эффекта (T max отражает скорость всасывания и наступления терапевтического эффекта); площадь под фармакокинетической кривой (AUC - area under concentration - отражает количество вещества, поступившего в кровь после однократного введения препарата).

Естественно, методы, используемые для определения биодоступности и биоэквивалентности, должны быть точными, надежными и воспроизводимыми. По регламенту ВОЗ (1994, 1996) определено, что два препарата считаются биоэквивалентными, если они имеют схожие фармакокинетические показатели и различия между ними не превышают 20%.

Таким образом, исследование биоэквивалентности позволяет сделать обоснованное заключение о качестве, эффективности и безопасности сравниваемых препаратов на основании меньшего объема первичной информации и в более сжатые сроки, чем при проведении других видов КИ.

При выполнении исследований по изучению эквивалентности двух препаратов в клинических условиях встречаются ситуации, когда лекарственное средство или его метаболит не могут быть определены в плазме крови или моче количественно. В этом случае оценивается фармакодинамическая эквивалентность. В то же время условия, в которых проводятся эти исследования, должны строго соответствовать требованиям GCP. Это, в свою очередь, означает, что при планировании, проведении и оценке результатов должны соблюдаться следующие требования: 1) измеряемая реакция должна представлять собой фармакологический или терапевтический эффект, подтверждающий эффективность или безопасность лекарственного средства; 2) методика должна быть валидирована с точки зрения точности, воспроизводимости, специфичности и достоверности; 3) реакция должна измеряться количественным двойным слепым методом, а результаты должны записываться с помощью соответствующего прибора с хорошим воспроизведением (если такие измерения невозможны, регистрация данных проводится по шкале визуальных аналогов, а обработка данных потребует специального непараметрического статистического анализа (к примеру, использование критерия Манна-Уитни, Уилкоксона и т.д.); 4) при высокой вероятности плацебо-эффекта рекомендуется включение в схему лечения плацебо; 5) дизайн исследования должен быть перекрестным или параллельным.

С биоэквивалентностью тесно связаны такие понятия, как фармацевтическая и терапевтическая эквивалентность.

Фармацевтическая эквивалентность подразумевает ситуацию, когда сравниваемые препараты содержат одинаковое количество одного и того же активного вещества в одной и той же лекарственной форме, соответствуют одним и тем же сопоставимым стандартам и применяются одинаковым способом. Фармацевтическая эквивалентность не обязательно предполагает терапевтическую эквивалентность, так как различия в наполнителях и в процессе производства могут обусловливать различия в эффективности препарата.

Под терапевтической эквивалентностью понимают такую ситуацию, когда препараты фармацевтически эквивалентны, а их воздействие на организм (т.е. фармакодинамические, клинические и лабораторные эффекты) одинаково.

Литература

1. Белых Л.Н. Математические методы в медицине. - М.: Мир, 1987.

2. Вальдман А.В . Экспериментальная и клиническая фармакокинетика: сб. тр. НИИ фармакологии АМН СССР. - М.: Медицина, 1988.

3. Лойд Э. Справочник по прикладной статистике. - М., 1989.

4. Мальцев В.И . Клинические испытания лекарств.— 2-е изд. - Киев: Морион, 2006.

5. Рудаков А.Г . Справочник по клиническим испытаниям / пер. с англ. - Brookwood Medical Publication Ltd., 1999.

6. Соловьев В.Н., Фирсов А.А., Филов В.А. Фармакокинетика (руководство). - М.: Медицина, 1980.

7. Стефанов О.В. Доклінічні дослідження лікарських засобів (метод. рекомендации). - Киів, 2001.

8. Стьюпер Э. Машинный анализ связи химической структуры и биологической активности. - М.: Мир, 1987.

9. Darvas F., Darvas L . // Quantitative structure-activity analysis / ed. by R.Franke et al. - 1998. - Р. 337-342.

10. Dean P.M . // Trends Pharm. Sci. - 2003. - Vol. 3. - P. 122-125.

11. Guideline for Good Clinical Trials. - ICN Harmonized Tripartite Guideline, 1998.

Медицинские новости. - 2009. - №2. - С. 23-28.

Внимание! Статья адресована врачам-специалистам. Перепечатка данной статьи или её фрагментов в Интернете без гиперссылки на первоисточник рассматривается как нарушение авторских прав.