Методы исследования и показатели внешнего дыхания. Объемы дыхания Резервный объем вдоха составляет

Фазы дыхания.

Процесс внешнего дыхания обусловлен изменением объема воздуха в легких в течение фаз вдоха и выдоха дыхательного цикла. При спокойном дыхании соотношение длительности вдоха к выдоху в дыхательном цикле равняется в среднем 1:1,3. Внешнее дыхание человека характеризуется частотой и глубиной дыхательных движений. Частота дыхания человека измеряется количеством дыхательных циклов в течение 1 мин и ее величина в покое у взрослого человека варьирует от 12 до 20 в 1 мин. Этот показатель внешнего дыхания возрастает при физической работе, повышении температуры окружающей среды, а также изменяется с возрастом. Например, у новорожденных частота дыхания равна 60-70 в 1 мин, а у людей в возрасте 25-30 лет - в среднем 16 в 1 мин. Глубина дыхания определяется по объему вдыхаемого и выдыхаемого воздуха в течение одного дыхательного цикла. Произведение частоты дыхательных движений на их глубину характеризует основную величину внешнего дыхания - вентиляцию легких . Количественной мерой вентиляции легких является минутный объем дыхания - это объем воздуха, который человек вдыхает и выдыхает за 1 мин. Величина минутного объема дыхания человека в покое варьирует в пределах 6-8 л. При физической работе у человека минутный объем дыхания может возрастать в 7-10 раз.

Рис. 10.5. Объемы и емкости воздуха в легких человека и кривая (спирограмма) изменения объема воздуха в легких при спокойном дыхании, глубоком вдохе и выдохе . ФОЕ - функциональная остаточная емкость.

Легочные объемы воздуха . В физиологии дыхания принята единая номенклатура легочных объемов у человека, которые заполняют легкие при спокойном и глубоком дыхании в фазу вдоха и выдоха дыхательного цикла (рис. 10.5). Легочный объем, который вдыхается или выдыхается человеком при спокойном дыхании, называется дыхательным объемом . Его величина при спокойном дыхании составляет в среднем 500 мл. Максимальное количество воздуха, которое может вдохнуть человек сверх дыхательного объема, называется резервным объемом вдоха (в среднем 3000 мл). Максимальное количество воздуха, которое может выдохнуть человек после спокойного выдоха, называется резервным объемом выдоха (в среднем 1100 мл). Наконец, количество воздуха, которое остается в легких после максимального выдоха, называется остаточным объемом, его величина равна примерно 1200 мл.

Сумма величин двух легочных объемов и более называется легочной емкостью . Объем воздуха в легких человека характеризуется инспираторной емкостью легких, жизненной емкостью легких и функциональной остаточной емкостью легких. Инспираторная емкость легких (3500 мл) представляет собой сумму дыхательного объема и резервного объема вдоха. Жизненная емкость легких (4600 мл) включает в себя дыхательный объем и резервные объемы вдоха и выдоха. Функциональная остаточная емкость легких (1600 мл) представляет собой сумму резервного объема выдоха и остаточного объема легких. Сумма жизненной емкости легких и остаточного объема называется общей емкостью легких, величина которой у человека в среднем равна 5700 мл.



При вдохе легкие человека за счет сокращения диафрагмы и наружных межреберных мышц начинают увеличивать свой объем с уровня , и его величина при спокойном дыхании составляет дыхательный объем , а при глубоком дыхании - достигает различных величин резервного объема вдоха. При выдохе объем легких вновь возвращается к исходному уровню функциональной остаточной емкости пассивно, за счет эластической тяги легких. Если в объем выдыхаемого воздуха начинает входит воздух функциональной остаточной емкости , что имеет место при глубоком дыхании, а также при кашле или чиханье, то выдох осуществляться за счет сокращения мышц брюшной стенки. В этом случае величина внутриплеврального давления, как правило, становится выше атмосферного давления, что обусловливает наибольшую скорость потока воздуха в дыхательных путях.

2. Техника проведения спирографии .

Исследование проводят утром натощак. Перед исследованием пациенту рекомендуется находиться в спокойном состоянии на протяжении 30 мин, а также прекратить прием бронхолитиков не позже чем за 12 часов до начала исследования.

Спирографическая кривая и показатели легочной вентиляции приведены на рис. 2.

Статические показатели (определяют во время спокойного дыхания ).

Главными переменными, использующимися для отображения наблюдаемых показателей внешнего дыхания и для построения показателей-конструктов являются: объём потока дыхательных газов, V (л ) и время t ©. Отношения между этими переменными могут быть представлены в виде графиков или диаграмм. Все они по являются спирограммами.

График зависимости объёма потока смеси дыхательных газов от времени называют спирограмма: объём потока – время .

График взаимозависимости объёмной скорости потока смеси дыхательных газов и объёма потока называют спирограмма: объёмная скорость потока – объём потока.

Измеряют дыхательный объем (ДО) - средний объем воздуха, который больной вдыхает и выдыхает во время обычного дыхания в состоянии покоя. В норме он составляет 500-800 мл. Часть ДО, которая принимает участие в газообмене, называется альвеолярным объемом (АО) и в среднем равняется 2/3 величины ДО. Остаток (1/3 величины ДО) составляет объем функционального мертвого пространства (ФМП).

После спокойного выдоха пациент максимально глубоко выдыхает - измеряется резервный объем выдоха (РОвыд), который в норме составляет 1000-1500 мл.

После спокойного вдоха делается максимально глубокий вдох - измеряется резервный объем вдоха (Ровд). При анализе статических показателей рассчитывается емкость вдоха (Евд) - сумма ДО и Ровд, которая характеризует способность легочной ткани к растяжению, а также жизненная емкость легких (ЖЕЛ) - максимальный объем, который можно вдохнуть после максимально глубокого выдоха (сумма ДО, РО ВД и Ровыд в норме составляет от 3000 до 5000 мл).

После обычного спокойного дыхания проводится дыхательный маневр: делается максимально глубокий вдох, а затем - максимально глубокий, самый резкий и длительный (не менее 6 с) выдох. Так определяется форсированная жизненная емкость легких (ФЖЕЛ) - объем воздуха, который можно выдохнуть при форсированном выдохе после максимального вдоха (в норме составляет 70-80 % ЖЕЛ).

Как заключительный этап исследования проводится запись максимальной вентиляции легких (МВЛ) - максимального объема воздуха, который может быть провентилирован легкими за I мин. МВЛ характеризует функциональную способность аппарата внешнего дыхания и в норме составляет 50-180 л. Снижение МВЛ наблюдается при уменьшении легочных объемов вследствие рестриктивных (ограничительных) и обструктивных нарушений легочной вентиляции.

При анализе спирографической кривой, полученной в маневре с форсированным выдохом , измеряют определенные скоростные показатели (рис. 3):

1) объем форсированного выдоха за первую секунду (ОФВ 1) - объем воздуха, который выдыхается за первую секунду при максимально быстром выдохе; он измеряется в мл и высчитывается в процентах к ФЖЕЛ; здоровые люди за первую секунду выдыхают не менее 70 % ФЖЕЛ;

2) проба или индекс Тиффно - соотношение ОФВ 1 (мл)/ЖЕЛ (мл), умноженное на 100 %; в норме составляет не менее 70-75 %;

3) максимальная объемная скорость воздуха на уровне выдоха 75 % ФЖЕЛ (МОС 75), оставшейся в легких;

4) максимальная объемная скорость воздуха на уровне выдоха 50 % ФЖЕЛ (МОС 50), оставшейся в легких;

5) максимальная объемная скорость воздуха на уровне выдоха 25 % ФЖЕЛ (МОС 25), оставшейся в легких;

6) средняя объемная скорость форсированного выдоха, вычисленная в интервале измерения от 25 до 75 % ФЖЕЛ (СОС 25-75).

Обозначения на схеме .
Показатели максимального форсированного выдоха:
25 ÷ 75% FEV - объёмная скорость потока в среднем интервале форсированного выдоха (между 25% и 75%
жизненной ёмкости лёгких),
FEV1 - объём потока за первую секунду форсированного выдоха.


Рис. 3 . Спирографическая кривая, полученная в маневре форсированного выдоха. Расчет показателей ОФВ 1 и СОС 25-75

Вычисление скоростных показателей имеет большое значение в выявлении признаков бронхиальной обструкции. Уменьшение индекса Тиффно и ОФВ 1 является характерным признаком заболеваний, которые сопровождаются снижением бронхиальной проходимости - бронхиальной астмы, хронического обструктивного заболевания легких, бронхоэктатической болезни и пр. Показатели МОС имеют наибольшую ценность в диагностике начальных проявлений бронхиальной обструкции. СОС 25-75 отображает состояние проходимости мелких бронхов и бронхиол. Последний показатель является более информативным, чем ОФВ 1 , для выявления ранних обструктивных нарушений.
В связи с тем, что в Украине, Европе и США существует некоторое различие в обозначении легочных объемов, емкостей и скоростных показателей, характеризующих легочную вентиляцию, приводим обозначения указанных показателей на русском и английском языках (табл. 1).

Таблица 1. Наименование показателей легочной вентиляции на русском и английском языках

Наименование показателя на русском языке Принятое сокращение Наименование показателя на английском языке Принятое сокращение
Жизненная емкость легких ЖЕЛ Vital capacity VC
Дыхательный объем ДО Tidal volume TV
Резервный объем вдоха Ровд Inspiratory reserve volume IRV
Резервный объем выдоха Ровыд Expiratory reserve volume ERV
Максимальная вентиляция легких МВЛ Maximal voluntary ventilation MW
Форсированная жизненная емкость легких ФЖЕЛ Forced vital capacity FVC
Объем форсированного выдоха за первую секунду ОФВ1 Forced expiratory volume 1 sec FEV1
Индекс Тиффно ИТ, или ОФВ 1 /ЖЕЛ % FEV1 % = FEV1/VC %
Максимальная объемная скорость в момент выдоха 25 % ФЖЕЛ, оставшейся в легких МОС 25 Maximal expiratory flow 25 % FVC MEF25
Forced expiratory flow 75 % FVC FEF75
Максимальная объемная скорость в момент выдоха 50 % ФЖЕЛ, оставшейся в легких МОС 50 Maximal expiratory flow 50 % FVC MEF50
Forced expiratory flow 50 % FVC FEF50
Максимальная объемная скорость в момент выдоха 75 % ФЖЕЛ, оставшейся в легких МОС 75 Maximal expiratory flow 75 % FVC MEF75
Forced expiratory flow 25 % FVC FEF25
Средняя объемная скорость выдоха в интервале от 25 % до 75 % ФЖЕЛ СОС 25-75 Maximal expiratory flow 25-75 % FVC MEF25-75
Forced expiratory flow 25-75 % FVC FEF25-75

Таблица 2. Наименование и соответствие показателей легочной вентиляции в различных странах

Украина Европа США
мос 25 MEF25 FEF75
мос 50 MEF50 FEF50
мос 75 MEF75 FEF25
СОС 25-75 MEF25-75 FEF25-75

Все показатели легочной вентиляции изменчивы. Они зависят от пола, возраста, веса, роста, положения тела, состояния нервной системы больного и прочих факторов. Поэтому для правильной оценки функционального состояния легочной вентиляции абсолютное значение того или иного показателя является недостаточным. Необходимо сопоставлять полученные абсолютные показатели с соответствующими величинами у здорового человека того же возраста, роста, веса и пола - так называемыми должными показателями. Такое сопоставление выражается в процентах по отношению к должному показателю. Патологическими считаются отклонения, превышающие 15-20 % от величины должного показателя.

5. СПИРОГРАФИЯ С РЕГИСТРАЦИЕЙ ПЕТЛИ «ПОТОК-ОБЪЁМ»

Спирография с регистрацией петли «поток-объем» - современный метод исследования легочной вентиляции, который заключается в определении объемной скорости движения потока воздуха вдыхательных путях и его графическом отображением в виде петли «поток-объем» при спокойном дыхании пациента и при выполнении им определенных дыхательных маневров. За рубежом этот метод называют спирометрией .

Целью исследования является диагностика вида и степени нарушений легочной вентиляции на основании анализа количественных и качественных изменений спирографических показателей.
Показания и противопоказания к применению метода аналогичны таковым для классической спирографии.

Методика проведения . Исследование проводят в первой половине дня, независимо от приема еды. Пациенту предлагают закрыть оба носовых хода специальным зажимом, взять индивидуальную простерилизованную насадку-мундштук в рот и плотно обхватить ее губами. Пациент в положении сидя дышит через трубку по открытому контуру, практически не испытывая сопротивления дыханию
Процедура выполнения дыхательных маневров с регистрацией кривой «поток-объем» форсированного дыхания идентична той, которая выполняется при записи ФЖЕЛ во время проведения классической спирографии. Больному надлежит объяснить, что в пробе с форсированным дыханием выдохнуть в прибор следует так, будто нужно погасить свечи на праздничном торте. После некоторого периода спокойного дыхания пациент делает максимально глубокий вдох, в результате чего регистрируется кривая эллиптической формы (кривая АЕВ). Затем больной делает максимально быстрый и интенсивный форсированный выдох. При этом регистрируется кривая характерной формы, которая у здоровых людей напоминает треугольник (рис. 4).

Рис. 4. Нормальная петля (кривая) соотношения объемной скорости потока и объема воздуха при проведении дыхательных маневров. Вдох начинается в точке А, выдох - в точке В. ПОСвыд регистрируется в точке С. Максимальный экспираторный поток в середине ФЖЕЛ соответствует точке D, максимальный инспираторный поток - точке Е

Спирограмма: объёмная скорость потока – объём потока форсированного вдоха/выдоха .

Максимальная экспираторная объемная скорость потока воздуха отображается начальной частью кривой (точка С, где регистрируется пиковая объемная скорость выдоха - ПОС ВЫД)- После этого объемная скорость потока уменьшается (точка D, где регистрируется МОС 50), и кривая возвращается к изначальной позиции (точка А). При этом кривая «поток-объем» описывает соотношение между объемной скоростью воздушного потока и легочным объемом (емкостью легких) во время дыхательных движений.
Данные скоростей и объемов потока воздуха обрабатываются персональным компьютером благодаря адаптированному программному обеспечению. Кривая «поток-объем» при этом отображается на экране монитора и может быть распечатана на бумаге, сохранена на магнитном носителе или в памяти персонального компьютера.
Современные аппараты работают со спирографическими датчиками в открытой системе с последующей интеграцией сигнала потока воздуха для получения синхронных значений объемов легких. Рассчитанные компьютером результаты исследования печатаются вместе с кривой «поток-объем» на бумаге в абсолютных значениях и в процентах к должным величинам. При этом на оси абсцисс откладывается ФЖЕЛ (объем воздуха), а на оси ординат - поток воздуха, измеряемый в литрах в секунду (л/с) (рис. 5).

Рис. 5. Кривая «поток-объем» форсированного дыхания и показатели легочной вентиляции у здорового человека


Рис. 6 Схема спирограммы ФЖЕЛ и соответствующей кривой форсированного выдоха в координатах «поток-объем»: V - ось объема; V" - ось потока

Петля «поток-объем» представляет собой первую производную классической спирограммы. Хотя кривая «поток-объем» содержит в основном ту же информацию, что и классическая спирограмма, наглядность соотношения между потоком и объемом позволяет более глубоко проникнуть в функциональные характеристики как верхних, так и нижних дыхательных путей (рис. 6). Расчет по классической спирограмме высокоинформативных показателей МОС 25 , МОС 50 , МОС 75 имеет ряд технических трудностей при выполнении графических изображений. Поэтому его результаты не обладают высокой точностью В связи с этим лучше определять указанные показатели по кривой «поток-объем».
Оценка изменений скоростных спирографических показателей осуществляется по степени их отклонения от должной величины. Как правило, за нижнюю границу нормы принимается значение показателя потока, что составляет 60 % от должного уровня.

MICRO MEDICAL LTD (UNITED KINGDOM)
Спирограф MasterScreen Pneumo Спирограф FlowScreen II

Спирометр-спирограф СпироС-100 АЛЬТОНИКА, ООО (РОССИЯ)
Спирометр СПИРО-СПЕКТР НЕЙРО-СОФТ (РОССИЯ)

21558 0

В настоящее время эти данные имеют больше академический интерес, но существующие компьютерные спирографы в считанные секунды способны выдать о них информацию, которая в значительной степени объективизирует состояние больного.

Дыхательный объем (ДО) — объем вдыхаемого или выдыхаемого воздуха при каждом дыхательном цикле.

Норма: 300 - 900 мл.

Уменьшение ДО возможно при пневмосклерозе, пневмофиброзе, спастическом бронхите, выраженном застое в легких, тяжелой сердечной недостаточности, обструктивной эмфиземе.

Резервный объем вдоха - максимальный объем газа, который можно вдохнуть после спокойного вдоха.

Норма: 1000 - 2000 мл.

Значительное уменьшение объема наблюдается при снижении эластичности легочной ткани.

Резервный объем выдоха - объем газа, который испытуемый может выдохнуть после спокойного выдоха.

Норма: 1000 - 1500 мл.

Жизненная емкость легких (ЖЕЛ) в норме составляет 3000 - 5000 мл. Учитывая большую вариабельность у здоровых лиц от должной величины на ± 15-20 %, этот показатель редко используется для оценки внешнего дыхания у больных реанимационного профиля.

Остаточный объем (Оо) - объем газа, остающегося в легких после максимального выдоха. Для вычисления должной величины (в миллилитрах) предложено умножать первые четыре цифры третьей степени роста (в сантиметрах) на эмпирический коэффициент 0,38.

В целом ряде ситуаций возникает феномен, называемый «экспираторное закрытие дыхательных путей» (ЭЗДП). Суть его заключается в том, что в ходе выдоха, когда объем легких уже приближается к остаточному, в разных зонах легких задерживается определенное количество газа (газовые ловушки). Изучению этого феномена А. П. Зильбер посвятил более 30 лет. Сегодня доказано, что этот феномен у тяжелых больных возникает достаточно часто при заболеваниях легких любого генеза, а также целом ряде критических состояний. Оценка степени ЭЗДП позволяет многограннее представить клиническую патофизиологию системных нарушений и дать прогноз и оценку эффективности предпринятых мероприятий.

К сожалению, оценка феномена ЭЗДП до настоящего времени носит больше академический характер, хотя сегодняшний день диктует необходимость широкого внедрения методов оценки ЭЗДП. Мы приведем лишь краткую характеристику используемых методов, а заинтересовавшихся с удовольствием отправим к монографии А П. Зильбера (Респираторная медицина. Этюды критической медицины. Т. 2. - Петрозаводск: Издательство ПГУ, 1996 - 488 с.).

Наиболее доступными являются методы, основанные на анализе экспираторной кривой тест-газа или пневмотахографической кривой при прерывании потока. Остальные методы - плетизмография всего тела и метод разведения тест-газа в закрытой системе - используются значительно реже.

Суть методов, основанных на анализе экспираторной кривой тест-газа, заключается в том, что испытуемый вдыхает порцию газа-теста в начале вдоха, а затем фиксируется кривая выдоха газа, регистрируемая синхронно со спирограммой или пневмотахограммой. В качестве тест-газов используется ксенон-133, азот, гексафторид серы (SF6).

Для характеристики ОЗДП используется один из показателей, характеризующий феномен ОЗДП - это объем закрытия легких . Физиологический смысл этого показателя можно понять из характеристики самой величины. ОЗЛ - это часть жизненной емкости легких, остающаяся в легких от момента закрытия дыхательных путей до остаточного объема легких. ОЗЛ выражается в процентах от жизненной емкости легких (ЖЕЛ).

Так, величина ОЗЛ, измеренная ксеноном-133, составляет 13,2 ± 2,7%, азотом - 13,7 ± 1,9 %.

Метод прерывания дыхательного потока, ранее используемый для измерения альвеолярного давления, с высокой степенью корреляции (r = 0,81; р<0,001) совпадает с методами, основанными на тест-газах (И. Г. Хейфец, 1978). Определение ОЗЛ данным методом возможно с помощью пневмотахографа любой конструкции.

ОЗЛ можно определить по формуле, предложенной И. Г. Хейфецом (1978).

Для положения сидя уравнение регрессии имеет вид:

ОЗЛ / ЖЕЛ (%) = 0,4 +0,38 . возраст (лет) ± 3,7;

для положения лежа уравнение имеет вид:

ОЗЛ / ЖЕЛ (%) = -2,75 + 0,55 возраст (лет).

Хотя величина ОЗЛ является достаточно информативной, однако для полной характеристики феномена ЭЗДП желательно измерять еще ряд показателей: емкость закрытия легких (ЕЗЛ), резерв функциональной остаточной емкости (РФОЕ), задержанный газ легких (ЗГЛ).

Резерв ФОЕ (РФОЕ) - это разность между функциональной остаточной емкостью (ФОЕ) и емкостью закрытия легких (ЕЗЛ), она является наиболее важным показателем, характеризующим ЭЗДП.

В положении сидя РФОЕ (л) можно определить по уравнению регрессии:

РФОЕ (л) = 1,95 - 0,003 возраст (лет) ± 0,5.

В положении лежа :

РФОЕ (л) = 1,33 - 0,33 возраст (лет)

в положении сидя -

РФОЕ / ЖЕЛ (%) = 49,1 - 0,8 возраст (лет) + 7,5;

в положении лежа -

РФОЕ / ЖЕЛ (%) = 32,8 - 0,77 возраст (лет).

Определение интенсивности метаболизма тяжелых больных осуществляется на основании потребления О2 и выделения СО2. Учитывая, что интенсивность метаболизма в течение суток изменяется, необходимо неоднократно определять указанные параметры для расчета респираторного коэффициента. Выброс СО2 измеряют как общее содержание СО2 в выдыхаемом воздухе, умноженное на выдыхаемую минутную вентиляцию.

Необходимо обращать внимание на тщательное перемешивание выдыхаемого воздуха. СО2 в выдыхаемом воздухе определяют с помощью капнографа. Для упрощения способа определения потребляемой энергии (ПЭ) принимается, что дыхательный (респираторный) коэффициент равен 0,8, при этом принимается, что 70% калорийности обеспечивается за счет углеводов и 30% - за счет жиров. Тогда потребляемую энергию можно определить по следующей формуле:

ПЭ (ккал / 24 ч) = ВСО2 24 60 4,8 / 0,8,

где ВСО2 - суммарный выброс СО2 (он определяется произведением концентрации СО2 в конце выдоха на минутную вентиляцию легких);

0,8 - респираторный коэффициент, при котором окисление 1 л О2 сопровождается образованием 4,83 ккал.

В реальной обстановке респираторный коэффициент может меняться у тяжелых больных ежечасно в зависимости от способов парентерального питания, адекватности обезболивания, степени антистрессовой защиты и т. д. Это обстоятельство требует мониторного (неоднократного) определения потребления О2 и выделения СО2. Для быстрой оценки потребляемой энергии используют формулы:

ПЭ (ккал/мин) = 3,94 (VО2) + (VCО2),

где VО2 - поглощение О2 в миллилитрах в минуту, a VCО2 - выделение СО2 в миллилитрах в минуту.

Для определения потребления энергии за 24 часа можно воспользоваться формулой:

ПЭ (ккал/сут) = ПЭ (ккал/мин) 1440.

После преобразования формула приобретает вид:

ПЭ (ккал/сут) = 1440.

В условиях отсутствия возможности определения энергозатрат с помощью калориметрии можно воспользоваться расчетными способами, которые, естественно, будут в определенной степени приблизительными. Подобные расчеты чаще всего необходимы для ведения тяжелых больных, находящихся на длительном парентеральном питании.

Показатели легочной вентиляции в значительной мере зависят от конституции, физической тренировки, роста, массы тела, пола и возраста человека, поэтому полученные данные необходимо сравнивать с так называемыми должными величинами. Должные величины высчитывают по специальным номограммам и формулам, в основе которых лежит определение должного основного обмена. Многие функциональные методы исследования в течением времени сократились до определенного стандартного объема.

Измерение легочных объемов

Дыхательный объем

Дыхательный объем (ДО) - это объем воздуха, вдыхаемого и выдыхаемого при нормальном дыхании, равный в среднем 500 мл (с колебаниями от 300 до 900 мл). Из него около 150 мл составляет объем воздуха функционального мертвого пространства (ВФМП) в гортани, трахее, бронхах, который не принимает участия в газообмене. Функциональная роль ВФМП заключается в том, что он смешивается с вдыхаемым воздухом, увлажняя и согревая его.

Резервный объем выдоха

Резервный объем выдоха - это объем воздуха, равныйу1500 -2000 мл, который человек может выдохнуть, если после нормального выдоха сделает максимальный выдох.

Резервный объем вдоха

Резервный объем вдоха - это объем воздуха, который человек может вдохнуть, если после нормального вдоха сделает максимальный вдох. Равен 1500 - 2000 мл.

Жизненная емкость легких

Жизненная емкость легких (ЖЕЛ) - равна сумме резервных объемов вдоха и выдоха и дыхательного объема (в среднем 3700 мл) и составляет тот объем воздуха, который человек в состоянии выдохнуть при самом глубоком выдохе после максимального вдоха.

Остаточный объем

Остаточный объем (ОО) - это объем воздуха, который остается в легких после максимального выдоха. Равен 1000 - 1500 мл.

Общая емкость легких

Общая (максимальная) емкость легких (ОЕЛ) является суммой дыхательного, резервных (вдох и выдох) и остаточного объемов и составляет 5000 - 6000 мл.

Исследование дыхательных объемов нужно для оценки компенсации дыхательной недостаточности путем увеличения глубины дыхания (вдоха и выдоха).

Спирография легких

Спирография легких позволяет получить наиболее достоверные данные. Кроме измерения легочных объемов, с помощью спирографа можно получить ряд дополнительных показателей (дыхательный и минутный объемы вентиляции и др.). Данные записываются в виде спирограммы, по которой можно судить о норме и патологии.

Исследование интенсивности легочной вентиляции

Минутный объем дыхания

Минутный объем дыхания определяется умножением дыхательного объема на частоту дыхания, в среднем равен 5000 мл. Более точно определяется с помощью спирографии.

Максимальная вентиляция легких

Максимальная вентиляция легких ("предел дыхания") - это количество воздуха, которое может провентилироваться легкими при максимальном напряжении дыхательной системы. Определяют спирометрией при максимально глубоком дыхании с частотой около 50 в мин., в норме равно 80 - 200 мл.

Резерв дыхания

Резерв дыхания отражает функциональные возможности дыхательной системы человека. У здорового человека равен 85% от максимальной вентиляции легких, а при дыхательной недостаточности уменьшается до 60 - 55% и ниже.

Все эти пробы позволяют изучать состояние легочной вентиляции, ее резервы, необходимость в которых может возникнуть при выполнении тяжелой физической работы или при заболевании органов дыхания.

Исследование механики дыхательного акта

Этот метод позволяет определить соотношения вдоха и выдоха, дыхательного усилия в разные фазы дыхания.

ЭФЖЕЛ

Экспираторную форсированную жизненную емкость легких (ЭФЖЕЛ), исследуют по Вотчалу - Тиффно. Она измеряется так же, как при определении ЖЕЛ, но при максимально быстром, форсированном выдохе. У здоровых лиц она оказывается на 8- 11% меньше, чем ЖЕЛ, в основном за счет увеличения сопротивления току воздуха в мелких бронхах. При ряде заболеваний, сопровождающихся увеличением сопротивления в мелких бронхах, например при бронхо-обструктивных синдромах, эмфиземе легких, ЭФЖЕЛ изменяется.

ИФЖЕЛ

Инспираторная форсированная жизненная емкость легких (ИФЖЕЛ) определяется при максимально быстром форсированном вдохе. Она не изменяется при эмфиземе, но уменьшается при нарушении проходимости дыхательных путей.

Пневмотахометрия

Пневмотахометрия

Пневмотахометрия оценивает изменение "пиковых" скоростей воздушного потока при форсированном вдохе и выдохе. Она позволяет оценить состояние бронхиальной проходимости. ###Пневмотахография

Пневмотахография проводится с помощью пневмотахографа, который регистрирует движение струи воздуха.

Пробы на выявление явной или скрытой дыхательной недостаточности

Основаны на определении потребления кислорода и кислородного дефицита с помощью спирографии и эргоспирографии. Этим методом можно определить потребление кислорода и кислородный дефицит у больного при выполнении им определенной физической нагрузки и в покое.

Для фридайвера легкие явлются основным "рабочим инстументом" (конечно, после головного мозга), поэтому нам важно понимать устройство легких и весь процесс дыхания. Обычно, когда мы говорим о дыхании, мы имеем в виду внешнее дыхание или вентиляцию легких - единственный заметный для нас процесс в цепи дыхания. И рассматривать дыхание надо начинать именно с него.

Строение легких и грудной клетки

Легкие представляют собой пористый орган, похожий на губку, напоминающий в своем строении скопление отдельных пузырьков или виноградную гроздь с большим количеством ягод. Каждая «ягода» - это легочная альвеола (легочный пузырек) - место, где происходит выполнение основной функции легких - газообмен. Между воздухом альвеол и кровью лежит воздушно-кровяной барьер, образованный очень тонкими стенками альвеолы и кровеносного капилляра. Именно через этот барьер происходит диффузия газов: из альвеолы в кровь поступает кислород, а из крови в альвеолу углекислый газ.

Воздух к альвеолам поступает по воздухоносным путям - трохея, бронхи и более мелкие бронхиолы, которые завершаются альвеолярными мешками. Ветвление бронхов и бронхиол формирует доли (правое легкое имеет 3 доли, левое - 2 доли). В среднем в обоих легких имеется около 500-700 млн альвеол, дыхательная поверхность которых составляет от 40 м 2 при вы­дохе до 120 м 2 при вдохе. При этом большее количество альвеол находится в нижних отделах легких.

Бронхи и трахея имеют в своих стенках хрящевое основание и поэтому достаточно жестки. Бронхиолы и альвеолы имеют мягкие стенки и поэтому могут спадаться, то есть слипаться, как спустивший воздушный шарик, если в них не поддерживать некое давление воздуха. Чтобы этого не произошло, легкие, как единый орган, со всех сторон покрытый плеврой - прочной герметичной оболочкой.

Плевра имеет два слоя - два листка. Один листок плотно прилежит к внутренней поверхности жесткой грудной клетки, другой - окружает легкие. Между ними находится плевральная полость, в которой поддерживается отрицательное давление. Благодаря этому легкие находятся в расправленном состоянии. Отрицательное давление в плевральной щели обусловлено эластической тягой легких, то есть постоянным стремлением легких уменьшить свой объем.

Эластическая тяга легких обусловлена тремя факторами:
1) упругостью ткани стенок альвеол вследствие наличия в них эластичных волокон
2) тонусом бронхиальных мышц
3) поверхностным натяжением пленки жидкости, покрывающей внутреннюю поверхность альвеол.

Жесткий каркас грудной клетки составляют ребра, которые гибко, благодаря хрящам и суставам, присоединяются к позвоночнику и суставам. Благодаря этому грудная клетка увеличивает и уменьшает свой объем, сохраняя при этом жесткость, необходимую для защиты находящихся в грудной полости органов.

Для того, чтобы вдохнуть воздух, нам необходимо создать в легких давление более низкое, чем атмосферное, а чтобы выдохнуть более высокое. Таким образом, для вдоха необходимо увеличение объема грудной клетки, для выдоха - уменьшением объема. На самом деле большая часть усилий дыхания расходуется на вдох, в обычных условиях выдох осуществляется за счет упругих свойств легких.

Основной дыхательной мышцей является диафрагма - куполообразная мышечная перегородка между полостью грудной клетки и брюшной полостью. Условно её границу можно провести по нижнему краю ребер.

При вдохе диафрагма сокращается, растягиваясь активным действием в сторону нижних внутренних органов. При этом несжимаемые органы брюшной полости оттесняются вниз и в стороны, растягивая стенки брюшной полости. При спокойном вдохе купол диафрагмы спускается приблизительно на 1.5 см, соответственно увеличивается вертикальный размер грудной полости. При этом нижние ребра несколько расходятся, увеличивая и обхват грудной клетки, что особенно заметно в нижних отделах. При выдохе диафрагма пассивно расслабляется и подтягивается, удерживающими её сухожилиями, в своё спокойное состояние.

Кроме диафрагмы, в увеличении объема грудной клетки принимают участие также наружные косые межреберные и межхрящевые мышцы. В результате подъема ребер увеличивается смещение грудины вперед и отхождение боковых частей ребер в стороны.

При очень глубоком интенсивном дыхании или при повышении сопротивления вдоху в процесс увеличения объема грудной клетки включается ряд вспомогательных дыхательных мышц, которые могут поднимать ребра: лестничные, большая и малая грудные, передняя зубчатая. К вспомогательным мышцам вдоха относятся также мышцы, разгибающие грудной отдел позвоночника и фиксирующие плечевой пояс при опоре на откинутые назад руки(трапециевидная, ромбовидные, поднимающая лопатку).

Как говорилось выше, спокойный вдох протекает пассивно, практически на фоне расслабления мышц вдоха. При активном интенсивном выдохе «подключаются» мышцы брюшной стенки, в результате чего объем брюшной полости уменьшается и повышается давление в ней. Давление передается на диафрагму и поднимает ее. Вследствие сокращения внутренних косых межреберных мышц происходит опускание ребер и сближение их краев.

Дыхательные движения

В обычной жизни, понаблюдав за собой и своими знакомыми, можно увидеть как дыхание, обеспечиваемое в основном диафрагмой, так и дыхание, обеспечиваемое в основном работой межреберных мышц. И это в пределах нормы. Мышцы плечевого пояса чаще подключаются при серьезных заболеваниях или интенсивной работе, но почти никогда - у относительно здоровых людей в нормальном состоянии.

Считается, что дыхание, обеспечиваемое в основном движениями диафрагмы, характерно больше для мужчин. В норме вдох сопровождается незначительным выпячиванием брюшной стенки, выдох - незначительным ее втяжением. Это брюшной тип дыхания.

У женщин чаще всего встречается грудной тип дыхания, обеспечиваемый в основном работой межреберных мышц. Это может быть связано с биологической готовностью женщины к материнству и, как следствие, с затрудненностью брюшного дыхания при беременности. При этом типе дыхания наиболее заметные движения совершает грудина и ребра.

Дыхание, при котором активно движутся плечи и ключицы, обеспечивается работой мышц плечевого пояса. Вентиляция легких при этом малоэффективна и касается только верхушек легких. Поэтому такой тип дыхания называется верхушечным. В обычных условиях такой тип дыхания практически не встречается и используется либо в ходе тех или иных гимнастик или развивается при серьезных заболеваниях.

Во фридайвинге мы считаем, что брюшной тип дыхания или дыхание животом является наиболее естественным и продуктивным. Об этом же говорится при занятиях йогой и пранаямой.

Во-первых, потому, что в нижних долях легких находится больше альвеол. Во-вторых, дыхательные движения связаны с нашей вегетативной нервной системой. Дыхание животом активирует парасимпатическую нервную систему - педаль тормоза для организма. Грудное дыхание активирует симпатическую нервную систему - педаль газа. При активном и долгом верхушечном дыхании происходит перестимуляция симпатической нервной системы. Это работает в обе стороны. Так паникующие люди всегда дышат верхушечным дыханием. И наоборот, если какое-то время спокойно дышать животом, происходит успокоение неврной системы и замедление всех процессов.

Легочные объемы

При спокойном дыхании человек вдыхает и выдыхает около 500 мл (от 300 до 800 мл) воздуха, этот объем воздуха называется дыхательным объемом . Кроме обычного дыхательного объема при максимально глубоком вдохе человек может вдохнуть еще приблизительно 3000 мл воздуха - это резервный объем вдоха . После обычного спокойного выдоха обычный здоровый человек напряжением мышц выдоха способен «выдавить» из легких еще около 1300 мл воздуха - это резервный объем выдоха .

Сумма указанных объемов составляет жизненную емкость легких (ЖЭЛ) : 500 мл + 3000 мл + 1300 мл = 4800 мл.

Как видим, природа подготовила для нас почти десятикратный запас по возможности «прокачивать» воздух через легкие.

Дыхательный объем - количественное выражение глубины дыхания. Жизненная емкость легких определяет собой максимальный объем воздуха, который может быть введен или выведен из легких в течение одного вдоха или выдоха. Средняя жизненная емкость легких у мужчин составляет 4000 - 5500 мл, у женщин - 3000 - 4500 мл. Физические тренировки и различные растяжки грудной клетки позволяют увеличить ЖЭЛ.

После максимального глубокого выдоха в легких остается около 1200 мл воздуха. Это - остаточный объем . Большая его часть может быть удалена из легких только при открытом пневмотораксе.

Остаточный объем определяется в первую очередь эластичностью диафрагмы и межреберных мышц. Увеличение подвижности грудной клетки и уменьшение остаточного объема - важная задача при подготовке к нырянию на большие глубины. Погружения ниже остаточного объема для обычного нетренированного человека - это погружения глубже 30-35 метров. Один из популярных способов увеличения эластичности диафрагмы и уменьшения остаточного объема легких - регулярное выполнение уддияна бандхи.

Максимальное количество воздуха, которое может находиться в легких, называется общей емкостью легких , она равна сумме остаточного объема и жизненной емкости легких (в использованном примере: 1200 мл + 4800 мл = 6000 мл).

Объем воздуха, находящийся в легких в конце спокойного выдоха (при расслабленной дыхательной мускулатуре) называется функциональной остаточной емкостью легких . Она равна сумме остаточного объема и резервного объема выдоха (в использованном примере: 1200 мл + 1300 мл = 2500 мл). Функциональная остаточная емкость легких близка к объему альвеолярного воздуха перед началом вдоха.

Вентиляция легких определяется объемом воздуха, вдыхаемого или выдыхаемого в единицу времени. Обычно измеряют минутный объем дыхания . Вентиляция легких зависит от глубины и частоты дыхания, которая в состоянии покоя составляет от 12 до 18 вдохов в минуту. Минутный объем дыхания равен произведению дыхательного объема на частоту дыхания, т.е. примерно 6-9 л.

Для оценки легочных объемов используется спирометрия - метод исследования функции внешнего дыхания, включающий в себя измерение объёмных и скоростных показателей дыхания. Мы рекомендуем пройти это исследование всем, кто планирует серьезно заниматься фридайвингом.

Воздух находится не только в альвеолах, но и в воздухоносных путях. К ним относятся полость носа (или рта при ротовом дыхании), носоглотка, гортань, трахея, бронхи. Воздух, находящийся в воздухоносных путях (за исключением дыхательных бронхиол), не участвует в газообмене. Поэтому просвет воздухоносных путей называют анатомическим мертвым пространством. При вдохе последние порции атмосферного воздуха входят в мертвое пространство и, не изменив своего состава, покидают его при выдохе.

Объем анатомического мертвого пространства около 150 мл или примерно 1/3 дыхательного объема при спокойном дыхании. Т.е. из 500 мл вдыхаемого воздуха в альвеолы поступает лишь около 350 мл. В альвеолах в конце спокойного выдоха находится около 2500 мл воздуха, поэтому при каждом спокойном вдохе обновляется лишь 1/7 часть альвеолярного воздуха.

  • ‹ Назад

УДК 612.215+612.1 ББК Е 92 + Е 911

А.Б. Загайнова, Н.В. Турбасова. Физиология дыхания и кровообращения. Учебно-методическое пособие по курсу «Физиология человека и животных»: для студентов 3 курса ОДО и 5 курса ОЗО биологического факультета. Тюмень.: Издательство Тюменского государственного университета, 2007. - 76 с.

Учебно-методическое пособие включает лабораторные работы, составленные в соответствии с программой курса «Физиология человека и животных», многие из которых иллюстрируют фундаментальные научные положения классической физиологии. Часть работ имеет прикладной характер и представляет собой методы самоконтроля здоровья и физического состояния, способы оценки физической работоспособности.

ОТВЕТСТВЕННЫЙ РЕДАКТОР: В.С.Соловьев, д.мед.н., профессор

© Тюменский государственный университет, 2007

© Издательство Тюменского государственного университета, 2007

© А.Б. Загайнова, Н.В. Турбасова, 2007

Пояснительная записка

Предметом исследования в разделах «дыхание» и «кровообращение» являются живые организмы и их функционирующие структуры, обеспечивающие эти жизненно-важные функции, чем и определяется выбор методов физиологического исследования.

Цель курса: сформировать представления о механизмах функционирования органов дыхания и кровообращения, о регуляции деятельности сердечно-сосудистой и дыхательной систем, об их роли в обеспечении взаимодействия организма с внешней средой.

Задачи лабораторного практикума: ознакомить студентов с методами исследования физиологических функций человека и животных; проиллюстрировать фундаментальные научные положения; представить методики самоконтроля физического состояния, оценки физической работоспособности при физических нагрузках различной интенсивности.

На проведение лабораторных занятий по курсу «Физиология человека и животных» отводится 52 часа на ОДО и 20 часов на ОЗО. Итоговая форма отчетности по курсу «Физиология человека и животных» - экзамен.

Требования к экзамену: необходимо понимание основ жизнедеятельности организма, в том числе механизмов функционирования систем органов, клеток и отдельных клеточных структур, регуляции работы физиологических систем, а также закономерности взаимодействия организма с внешней средой.

Учебно-методическое пособие разработано в рамках программы общего курса «Физиология человека и животных» для студентов биологического факультета.

ФИЗИОЛОГИЯ ДЫХАНИЯ

Сущность процесса дыхания заключается в доставке к тканям орга­низма кислорода, обеспечивающего протекание окислительных реакций, что приводит к освобождению энергии и выделению из организма диоксида углерода, образующегося в результате обмена веществ.

Процесс, протекающий в легких и заключающийся в обмене газов между кровью и окружающей средой (воздухом, поступающим в альвеолы, называют внешним, легочным дыханием, или вентиляцией легких .

В результате газообмена в легких кровь насыщается кислородом, теряет углекислоту, т.е. вновь становится способной переносить кислород к тканям.

Обновление газового состава внутренней среды организма происходит вследствие циркуляции крови. Транспортная функция осуществляется кровью благодаря физическому растворению в ней СО 2 и О 2 и связыванию их с компонентами крови. Так, гемоглобин способен вступать в обратимую реакцию с кислородом, а связывание СО 2 происходит в результате образования в плазме крови обратимых бикарбонатных соединений.

Потребление кислорода клетками и осуществление окислительных реакций с образованием углекислого газа составляет сущность процессов внутреннего , или тканевого дыхания .

Таким образом, лишь последовательное изучение всех трех звеньев дыхания может дать представление об одном из самых сложных физиологических процессов.

Для изучения внешнего дыхания (вентиляция легких), газообмена в легких и тканях, а также транспорта газов кровью используют различные методы, позволяющие оценивать дыхательную функцию в состоянии покоя, при физической нагрузке и различных воздействиях на организм.

ЛАБОРАТОРНАЯ РАБОТА № 1

ПНЕВМОГРАФИЯ

Пневмография - это регистрация дыхательных движений. Она позволяет определить частоту и глубину дыхания, а также соотношение продолжительности вдоха и выдоха. У взрослого человека число дыхательных движений составляет 12-18 в минуту, у детей дыхание более частое. При физической работе оно увеличивается вдвое и более. При мышечной работе изменяется и частота, и глубина дыхания. Изменение ритма дыхания и его глубины наблюдаются во время глотания, разговора, после задержки дыхания и т. п.

Между двумя фазами дыхания нет пауз: вдох непосредственно переходит в выдох и выдох во вдох.

Как правило, вдох несколько короче выдоха. Время вдоха относится ко времени выдоха, как 11:12 или даже как 10:14.

Кроме ритмических дыхательных движений, обеспечивающих вентиляцию легких, по времени могут наблюдаться особые дыхательные движения. Некоторые из них возникают рефлекторно (защитные дыхательные движения: кашель, чихание), другие произвольно, в связи с фонацией (речью, пением, декламацией и др.).

Регистрация дыхательных движений грудной клетки осуществляется при помощи специального прибора - пневмографа. Получаемая запись – пневмограмма – позволяет судить: о продолжительности фаз дыхания - вдоха и выдоха, частоте дыхания, относительной глубине, зависимости частоты и глубины дыхания от физиологического состояния организма - покоя, работы и т.д.

Пневмография основана на принципе воздушной передачи дыхательных движений грудной клетки пишущему рычажку.

Наиболее употребительный в настоящее время пневмограф представляет собой продолговатую резиновую камеру, помещенную в матерчатый чехол, герметически соединенный резиновой трубочкой с капсулой Марэ. При каждом вдохе грудная клетка расширяется и сдавливает воздух в пневмографе. Это давление передается в полость капсулы Марэ, ее упругая резиновая крышечка поднимается, и опирающийся на нее рычажок пишет пневмограмму.

В зависимости от применяемых датчиков пневмографию можно осуществлять различными способами. Наиболее простым и доступным для регистрации дыхательных движений является пневмодатчик с капсулой Марэ. Для пневмографии можно применять реостатные, тензометрические и емкостные датчики, но в этом случае необходимы электронные усилительные и регистрирующие устройства.

Для работы необходимы: кимограф, манжетка от сфигмоманометра, капсула Марэ, штатив, тройник, резиновые трубки, отметчик времени, раствор аммиака. Объект исследования - человек.

Проведение работы. Собирают установку для регистрации ды­хательных движений, как показано на рис. 1, А. Манжетку от сфигмоманометра укрепляют на самой подвижной части грудной клетки испытуемого (при брюшном типе дыхания это будет нижняя треть, при грудном - средняя треть грудной клетки) и соединяют ее с помощью тройника и резиновых трубок с капсулой Марэ. Через тройник, открыв зажим, в регистрирующую систему вводят небольшое количество воздуха, следя за тем, чтобы слишком высокое давление неразорвало резиновую перепонку капсулы. Убедившись, что пневмограф укреплен правильно и движения грудной клетки передаются рычажку капсулы Марэ, подсчитывают число дыхательных движений в минуту, а затем устанавливают писчик по касательной к кимографу. Включают кимограф и отметчик времени и приступают к записи пневмограммы (испытуемый при этом не должен смотреть на пневмограмму).

Рис. 1. Пневмография.

А - графическая регистрация дыхания с помощью капсулы Марэ; Б - пневмограммы, записанные при действии различных факторов, вызывающих изменение дыхания: 1 - широкая манжетка; 2 - резиновая трубка; 3 – тройник; 4 - капсула Марэ; 5 – кимограф; 6 -отметчик времени; 7 - универсальный штатив; а - спокойное дыхание; б - при вдыхании паров аммиака; в - во время разговора; г - после гипервентиляции; д - после произвольной задержки дыхания; е - при физической нагрузке; б"-е" - отметки применяемого воздействия.

Регистрируют на кимографе следующие типы дыхания:

1) спокойное дыхание;

2) глубокое дыхание (испытуемый произвольно делает несколько глубоких вдохов и выдохов – жизненная емкость легких);

3) дыхание после физической нагрузки. Для этого испытуемого просят, не сни­мая пневмографа, сделать 10-12 приседаний. При этом, чтобы в результате резких толчков воздуха не разорвалась покрышка капсулы Марея, зажимом Пеана пережимают резиновую трубочку соединяющую пневмограф с капсулой. Тотчас после окончания приседаний зажим снимают и записывают дыхательные движения);

4) дыхание во время декламации, разговорной речи, смеха (обращают внимание, как изменяется продолжительность вдоха и выдоха);

5) дыхание при кашле. Для этого испытуемый делает несколько произвольных выдыхательных кашлевых движений;

6) одышку - диспноэ, вызванную задержкой дыхания. Опыт произво­дят в следующем порядке. Записав нормальное дыхание (эйпноэ) в положении испытуемого сидя, просят его задержать дыхание на выдохе. Обычно через 20-30 секунд происходит непро­извольное восстановление дыхания, причём частота и глубина дыхательных движений становятся значительно больше, наблю­дается одышка;

7) изменение дыхания при уменьшении углекислого газа в аль­веолярном воздухе и крови, что достигается гипервентиляци­ей лёгких. Испытуемый делает глубокие и частые дыхательные движения до лёгкого головокружения, после чего наступает естественная задержка дыхания (апноэ);

8) при глотании;

9) при вдыхании паров аммиака (к носу испытуемого подносят вату, смоченную раствором аммиака).

Некоторые пневмограммы представлены на рис. 1,Б.

Полученные пневмограммы наклейте в тетрадь. Рассчитайте количество дыхательных движений в 1 минуту при разных условиях регистрации пневмограммы. Определите, в какую фазу дыхания осуществляется глотание и речь. Сравните характер изменения дыхания под влиянием различных факторов воздействия.

ЛАБОРАТОРНАЯ РАБОТА № 2

СПИРОМЕТРИЯ

Спирометрия - метод определения жизненной емкости легких и составляющих ее объемов воздуха. Жизненная емкость легких (ЖЕЛ) - это наибольшее количество воздуха, которое человек может выдохнуть после максимального вдоха. На рис. 2 показаны легочные объемы и емкости, характеризующие функциональное состояние легких, а также пневмограмма, поясняющая связь объемов и емкостей легких с дыхательными движениями. Функциональное состояние легких зависит от возраста, роста, пола, физического развития и ряда, других факторов. Для оценки функции дыхания у данного лица, измеренные у него легочные объемы следует сравнивать с должными величинами. Должные величины рассчитывают по формулам или определяют по номограммам (рис. 3), отклонения на ± 15% расцениваются как несущественные. Для измерения ЖЕЛ и составляющих ее объемов используют сухой спирометр (рис. 4).

Рис. 2. Спирограмма. Легочные объёмы и ёмкости:

РОвд - резервный объем вдоха; ДО - дыхательный объем; РОвыд - резервный объем выдоха; ОО - остаточный объем; Евд - емкость вдоха; ФОЕ - функциональная остаточная емкость; ЖЕЛ - жизненная емкость легких; ОЕЛ - общая емкость легких.

Легочные объемы:

Резервный объем вдоха (РОвд) – максимальный объем воздуха, который человек может вдохнуть после спокойного вдоха.

Резервный объем выдоха (РОвыд) – максимальный объем воздуха, который человек может выдохнуть после спокойного выдоха.

Остаточный объем (ОО) – объем газа в легких после максимального выдоха.

Емкость вдоха (Евд) – максимальный объем воздуха, который человек может вдохнуть после спокойного выдоха.

Функциональная остаточная емкость (ФОЕ) – объем газа в легких, остающийся после спокойного вдоха.

Жизненная емкость легких (ЖЕЛ) – максимальный объем воздуха, который можно выдохнуть после максимального вдоха.

Общая емкость легких (ОЕл) – объем газов в легких после максимального вдоха.

Для работы необходимы: сухой спирометр, носовой зажим, загубник, спирт, вата. Объект исследования - человек.

Преимущество сухого спирометра заключается в том, что он портативен и удобен в работе. Сухой спирометр представляет собой воздушную турбинку, вращаемую струей выдыхаемого воздуха. Вращение турбинки через кинематическую цепь передается стрелке прибора. Для остановки стрелки по оконча­нии выдоха спирометр снабжен тормозным устройством. Величину измеряемого объема воздуха определяют по шкале прибора. Шкалу можно поворачивать, что позволяет устанавливать стрелку на нуль перед каждым измерением. Выдох воздуха из легких производят через мундштук.

Проведение работы. Мундштук спирометра протирают ватой, смоченной спиртом. Испытуемый после максимального вдоха делает максимально глубокий выдох в спирометр. По шкале спирометра определяют ЖЕЛ. Точность результатов повышается, если измерение ЖЕЛ производят несколько раз и вычисляют среднюю величину. При многократных измерениях необходимо каждый раз устанавливать исходное положение шкалы спирометра. Для этого у сухого спирометра поворачивают из­мерительную шкалу и нулевое деление шкалы совмещают со стрелкой.

ЖЕЛ определяют в положении испытуемого стоя, сидя и лежа, а также после физической нагрузки (20 приседаний за 30 секунд). Отмечают разницу в результатах измерений.

Затем испытуемый осуществляет несколько спокойных выдохов в спирометр. При этом подсчитывают количество дыхательных движений. Разделив показания спирометра на число выдохов, сделанных в спирометр, определяют дыхательный объем воздуха.

Рис. 3. Номограмма для определения долж­ной величины ЖЕЛ.

Рис. 4. Суховоздушный спиро­метр.

Для определения резервного объема выдоха испытуемый делает после очередного спокойного выдоха максимальный выдох в спирометр. По шкале спирометра определяют резервный объем выдоха. Повторяют измерения несколько раз и вычисляют среднюю величину.

Резервный объем вдоха можно определить двумя способами: вычислить и измерить спирометром. Для его вычисления необходимо из величины ЖЕЛ вычесть сумму дыхательного и резервного (выдоха) объемов воздуха. При измерении резервного объема вдоха спирометром в него набирают определённый объем воздуха и испытуемый после спокойного вдоха делает максимальный вдох из спирометра. Разность между первоначальным объемом воздуха в спирометре и объемом, оставшимся там после глубокого вдоха, соответствует резервному объему вдоха.

Для определения остаточного объема воздуха не существует прямых методов, поэтому используют косвенные. Они могут быть основаны на разных принципах. Для этих целей применяют, например, плетизмографию, оксигемометрию и измерение концентрации индикаторных газов (гелий, азот). Считают, что в норме остаточный объем составляет 25-30% от величины ЖЕЛ.

Спирометр дает возможность установить и ряд других характеристик дыхательной деятельности. Одной из них являет величина легочной вентиляции. Для ее определения число циклов дыхательных движений в минуту умножают на дыхательный объем. Так, за одну минуту между организмом и средой в норме обменивается около 6000 мл воздуха.

Альвеолярная вентиляция = частота дыхания х (дыхательный объем - объем «мертвого» пространства).

Установив параметры дыхания, можно оценить интенсивность обмена веществ в организме, определив потребление кислорода.

В ходе работы важно выяснить, находятся ли величины, полученные для конкретного человека, в пределах нормы. С этой целью были разработаны специальные номограммы и формулы, где учитывается корреляция отдельных характеристик функции внешнего дыхания и таких факторов как: пол, рост, возраст и др.

Должная величина жизненной емкости легких рассчитывается по формулам (Гуминский А.А., Леонтьева Н.Н., Маринова К.В., 1990):

для мужчин -

ЖЕЛ = {(рост (см) х 0,052) – (возраст (лет) х 0,022)} - 3,60;

для женщин –

ЖЕЛ = {(рост (см) х 0,041)- (возраст (лет) х 0,018)} - 2,68.

для мальчиков 8 -12 лет -

ЖЕЛ = {(рост (см) х 0,052) - (возраст (лет) х 0,022)} - 4,6;

для мальчиков 13 -16 лет-

ЖЕЛ = {(рост (см) х 0,052) - (возраст (лет) х 0,022)} - 4,2;

для девочек 8 - 16 лет -

ЖЕЛ = {(рост (см) х 0,041) - (возраст (лет) х 0,018)} - 3,7.

К 16-17 годам жизненная емкость легких достигает величин, характерных для взрослого человека.

Результаты работы и их оформление. 1. Занесите в таблицу 1 результаты измерений, вычислите среднее значение ЖЕЛ.

Таблица 1

Номер измерения

ЖЕЛ (покой)

стоя сидя
1 2 3 Среднее

2. Сравните результаты измерений ЖЕЛ (покой) стоя и сидя. 3. Сравните результаты измерений ЖЕЛ стоя (покой) с результатами, полученными после физической нагрузки. 4. Рассчитайте % от должной величины, зная показатель ЖЕЛ, полученный при измерении стоя (покой) и должной ЖЕЛ (рассчитанной по формуле):

ЖЕЛфакт. х 100 (%).

5. Сравните величину ЖЕЛ, измеренную спирометром, с должной ЖЕЛ, найденной по номограмме. Рассчитайте остаточный объем, а также емкости легких: общую емкость легких, емкость вдоха и функциональную остаточную емкость. 6. Сделайте выводы.

ЛАБОРАТОРНАЯ РАБОТА № 3

ОПРЕДЕЛЕНИЕ МИНУТНОГО ОБЪЕМА ДЫХАНИЯ (МОД) И ЛЕГОЧНЫХ ОБЪЕМОВ

(ДЫХАТЕЛЬНОГО, РЕЗЕРВНОГО ОБЪЕМА ВДОХА

И РЕЗЕРВНОГО ОБЪЕМА ВЫДОХА)

Вентиляция легких определяется объемом воздуха, вдыхаемого или выдыхаемого в единицу времени. Обычно измеряют минутный объем дыхания (МОД). Его величина при спокойном дыхании 6-9 л. Вентиляция легких зависит от глубины и частоты дыхания, которая в состоянии покоя составляет 16 в 1 мин (от 12 до 18). Минутный объем дыхания равен:

МОД = ДО х ЧД,

где ДО - дыхательный объем; ЧД - частота дыхания.

Для работы необходимы: сухой спирометр, носовой зажим, спирт, вата. Объект исследования - человек.

Проведение работы. Для определения объема дыхательного воздуха испытуемый должен сделать спокойный выдох в спирометр после спокойного вдоха и определить дыхательный объем (ДО). Для определения резервного объема выдоха (РОвыд) после спокойного обычного выдоха в окружающее пространство сделать глубокий выдох в спирометр. Для определения резервного объема вдоха (РОвд) установить внутренний цилиндр спирометра на каком-либо уровне (3000-5000), а затем, сделав спокойный вдох из атмосферы, зажав нос, сделать максимальный вдох из спирометра. Все измерения повторить три раза. Резервный объем вдоха можно определить по разнице:

РОвд = ЖЕЛ – (ДО – РОвыд)

Расчетным методом определить сумму ДО, РОвд и РОвыд, составляющую жизненную емкость легких (ЖЕЛ).

Результаты работы и их оформление. 1. Полученные данные оформите в виде таблицы 2.

2. Рассчитайте минутный объем дыхания.

Таблица 2

ЛАБОРАТОРНАЯ РАБОТА № 4