Какая матрица лучше: IPS или TN-TFT? Матрицы VA – основа дисплеев с уникально высокой контрастностью

Мониторы с разными типами матриц

Сейчас настала эра жидкокристаллических моделей, которые (по заявлению производителей) «совершенно безопасны». Однако это не совсем так. Здесь все зависит от типа матрицы, которая используется в дисплее. Некоторые из них действительно обеспечивают качественную цветопередачу и почти не влияют на глаза юзера. Но есть и другие. Выбор монитора с правильной матрицей может положительно сказаться не только на общем комфорте, но и на здоровье человека. А значит, пренебрегать этим нельзя. Лучше немного переплатить, но получить качественный продукт.

Какие типы матриц бывают?

Читайте также: Мониторы со звуком: ТОП-15 моделей 2017 года

Матричный монитор

В годы засилья ЭЛТ ящиков не было таких «заморочек» по поводу матриц и прочего. Это потому, что в те времена даже не существовало понятия «матрица» . Но теперь все изменилось. И производители выпускают разнообразные модели с различной начинкой.

  • TN+Film. Самый популярный тип, который используется в подавляющем большинстве современных бюджетных дисплеев
  • IPS и его производные. Более качественные матрицы, которые широко используются профессионалами.
  • VA. Тип матриц, применяемых в дисплеях среднего ценового сегмента. Какими-то выделяющимися особенностями не отличается
  • PLS . Нечто похожее на IPS, но использующее более передовые технологии. Также успешно применяется дизайнерами и графиками
  • OLED . Самый крутой (но немного недоработанный) тип. Отличается превосходной цветопередачей и широкими углами обзора. Однако есть и серьезные недостатки (о них далее)

Все вышеперечисленные варианты являются основными. В продаже существуют и модификации существующих матриц, но они не заслуживают особого внимания, так как не сильно отличаются от оригиналов по характеристикам. А теперь подробнее о каждом типе.

TN+Film

Читайте также: АОС G2460PF монитор для настоящих геймеров. Обзор 2017 года + Отзывы

TN монитор

Эти матрицы появились первыми. Они пришли на смену устаревшим CRT технологиям (ЭЛТ). На данный момент они отличаются дешевизной, так как процесс производства таких матриц весьма прост (по сравнению с другими).

Отличительными особенностями TN являются малое время отклика матрицы и неплохие горизонтальные углы обзора. Вот с вертикальными – беда. Если неправильно повернуть монитор, то цвета даже могут инвертироваться.

Также не очень привлекателен в таких моделях цветовой охват. В дешевых матрицах он не составляет даже 70% sRGB. А это уже довольно серьезно. При такой цветопередаче нормально работать с изображениями не получится.

Максимальной яркости подсветки тоже недостаточно. Мониторы с такой матрицей могут успешно использоваться только в помещениях. Прямых солнечных лучей они не выдерживают. И это еще один минус.

Преимущества TN:

  • низкая стоимость
  • малое время отклика
  • возможность применения в сложных условиях
  • идеальный вариант для игр
  • хорошие углы обзора по горизонтали
  • долговечность
  • отличная контрастность

Недостатки TN:

  • никакая цветопередача
  • недостаточная яркость
  • плохие углы обзора по вертикали
  • устаревшая технология
  • недостаточная насыщенность черного цвета

Плюсов и минусов у этих матриц примерно одинаковое количество. Однако никто не будет опровергать тот факт, что данная технология уже устарела. Но такие мониторы прочно обосновались в сегменте продуктов для геймеров.

Профессионалам этим морально устаревшие матрицы ни к чему , а вот среднестатистические пользователи и профессиональные киберспортсмены до сих пор на них сидят. Но у последних модифицированные варианты. И цена на них начинается от 500 долларов.

IPS

Читайте также: IPS матрица: что это такое? Обзор технологии + Отзывы

IPS монитор

На данный момент IPS-мониторы широко распространены даже в бюджетном сегменте. Но на заре этой технологии такие устройства могли себе позволить только очень обеспеченные пользователи. Однако времена изменились.

VA монитор

Матрицы VA появились уже после IPS. В них производители постарались исправить недочеты предыдущих поколений, однако не все прошло гладко. В настоящее время VA мониторы составляют ничтожно малый процент на рынке и не пользуются большой популярностью.

Тем не менее, эти матрицы могут похвастаться изумительной контрастностью (черный выглядит так, как ему полагается), отличными углами обзора, хорошей цветопередачей и отсутствием вредного излучения.

Однако время отклика матрицы оставляет желать лучшего. Причем оно еще и динамическое: увеличивается в зависимости от начального и конечного состояния пикселя. Это делает такие дисплеи вовсе непригодными для игр и динамических сцен в фильмах.

Однако профессионалы, работающие с графикой, вполне довольны таким положением вещей. Именно они и являются основными покупателями мониторов на VA матрицах. Им главное – адекватный черный цвет. И он здесь есть.

Преимущества VA:

  • полная цветопередача
  • очень высокая контрастность
  • реалистичный черный цвет
  • отсутствие нагрузки на глаза
  • возможность применения в профессиональных сферах
  • отличные углы обзора (как горизонтальные, так и вертикальные)
  • высокая яркость
  • хорошая плотность пикселей на дюйм

PLS монитор

Матрицы типа PLS практически ничем не отличаются от IPS, хоть и были придуманы гораздо больше. За основу была взята именно эта технология. Поэтому и характеристики у обеих матриц примерно равные.

Главным отличием PLS от IPS является черный цвет. У PLS он намного насыщеннее. Это все из-за высокой контрастности. Но в остальном – это точная копия продукта десятилетней давности. Даже исследования матриц под микроскопом не выявили никаких отличий.

PLS мониторы активно скупаются дизайнерами, профессионалами в обработке видео и такими же пользователями. Они отлично подходят для обработки изображений, так как обладают отменной цветопередачей.

Справедливости ради стоит сказать, что эти дисплеи больше приспособлены к динамическим играм, чем IPS. Они с легкостью выдают качественную картинку даже при 120 кадрах в секунду. А это о многом говорит.

Преимущества PLS:

  • отличная цветопередача
  • высокая контрастность
  • реалистичный черный
  • широкие углы обзора
  • нормальная работа при отображении динамических сцен
  • яркая подсветка
  • приличное количество пикселей на дюйм (плотность PPI)

Недостатки PLS:

  • высокая цена
  • очень трудно найти в рознице
  • недолговечность

Трудно сказать, какое будущее ожидает PLS мониторы. С одной стороны, они немного лучше, чем те же IPS. Но стоят ощутимо дороже. Поэтому вряд ли они обретут высокую популярность. Особенно, если учесть тот факт, что в последнее время IPS дисплеи заметно подешевели.

Если стоит выбор между PLS и IPS , то лучше выбрать последний. У этой технологии есть будущее. А вот что будет в дальнейшем с PLS матрицами – неизвестно. Возможно, проект и вовсе свернут. Как не рентабельный.

Выбирая себе монитор, телевизор или телефон, покупатель часто стает перед выбором типа экрана. Какому же из них отдать предпочтение: IPS или TFT? Причиной такого замешательства стало постоянное усовершенствование технологий по изготовлению дисплеев.

Все мониторы с TFT технологией можно разделить на три основных типа:

  1. TN+Film.
  2. PVA/MVA.

То есть, технология TFT представляет собой жидкокристаллический дисплей с активной матрицей , а IPS — это одна из разновидностей этой матрицы . И сравнение этих двух категорий не возможно, так как практически это одно и тоже. Но если все же разобраться более подробно в том, что собой представляет дисплей с TFT матрицей, то сравнение провести можно, но не между экранами, а между технологиями их изготовления: IPS и TFT-TN.

Общее понятие TFT

TFT (Thin Film Transistor) переводится, как тонкопленочный транзистор . В основе ЖК дисплея с технологией TFT лежит активная матрица. Такая технология подразумевает спиральное расположение кристаллов, которые в условиях сильного напряжения делают поворот таким образом, что экран стает черным. А при отсутствии напряжения большой мощности мы видим белый экран. Дисплеи с такой технологией на выходе выдают лишь темно-серый цвет вместо идеального черного. Поэтому TFT дисплеи пользуются популярностью в основном в изготовлении более дешевых моделей.

Описание IPS

Технология матрицы ЖК экрана IPS (In-Plane Switching) подразумевает параллельное расположение кристаллов по всей плоскости монитора . Спирали здесь отсутствуют. И поэтому кристаллы в условиях сильного напряжения не поворачиваются. Иными словами технология IPS — это ничто иное, как улучшенная TFT. Она намного лучше передает черный цвет, тем самым улучшая степень контрастности и яркости изображения. Именно поэтому данная технология стоит дороже, чем TFT, и используется в более дорогих моделях.

Основные отличия TN-TFT и IPS

Желая реализовать как можно больше продукции, менеджеры по продажам вводят людей в заблуждение о том, что TFT и IPS — это совершенно разные типы экранов. Специалисты из сферы маркетинга не дают исчерпывающих сведений о технологиях и это позволяет им выдавать уже существующую разработку за только что появившуюся.

Рассматривая IPS и TFT, мы видим, что это практически одно и тоже . Разница лишь в том, что монитор с IPS технологией являются более свежей разработкой, по сравнению с TN-TFT. Но несмотря на это, все же можно выделить ряд отличий между данными категориями:

  1. Повышенная контрастность . То, как отображается черный цвет, напрямую влияет на контрастность изображения. Если наклонить экран с технологией TFT без IPS, то прочитать что-либо будет практически не возможно. А все из-за того, что экран при наклоне стает темным. Если же рассматривать IPS матрицу, то, благодаря тому, что передача черного цвета производится кристаллами идеально, изображение получается достаточно четким.
  2. Передача цвета и количество отображаемых оттенков . Матрица TN-TFT не лучшим образом передает цвета. А все из-за того, что каждый пиксель имеет собственный оттенок и это приводит к искажению цвета. Экран с технологией IPS намного бережнее передает изображение.
  3. Задержка отклика . Одним из преимуществ TN-TFT экранов над IPS является высокоскоростной отклик. А все потому, что на поворот множества параллельных кристаллов IPS затрачивает много времени. Отсюда делаем вывод, что там, где скорость прорисовки имеет большое значение, лучше использовать экран с матрицей TN. Дисплеи с технологией IPS работают медленнее, но в повседневной жизни этого не заметно. А выявить данное различие можно лишь применив специально предназначенные для этого технологические тесты. Как правило, предпочтение лучше отдавать дисплеям с матрицей IPS.
  4. Угол обзора . Благодаря широкому углу обзора экран с технологией IPS не искажает изображения, даже если смотреть на него под углом в 178 градусов. При чем такое значение угла обзора может быть как по вертикали, так и по горизонтали.
  5. Энергоемкость . Дисплеи с IPS технологией, в отличии от TN-TFT, требуют больше энергии. Это обусловлено тем, что для того, чтобы повернуть параллельные кристаллы, нужно большое напряжение. В итоге на аккумулятор идет больше нагрузки, чем при использовании TFT матрицы. Если вам необходимо устройство с небольшой энергоемкостью, то TFT технология будет идеальным вариантом.
  6. Ценовая политика . В большинстве бюджетных моделей электроники используют дисплеи на основе TN-TFT технологии, поскольку этот вид матрицы является самым недорогим.На сегодняшний день мониторы с IPS матрицей хоть и стоят дороже, но их используют практически во всех современных электронных моделях. Это постепенно приводит к тому, что IPS матрица практически вытесняет оборудование с технологией TN-TFT.

Итоги

Исходя из всего выше сказанного, можно подвести следующий итог.

01. 07.2018

Блог Дмитрия Вассиярова.

IPS или VA — взвешиваем все плюсы и минусы

Доброго времени суток моим подписчикам и новым читателям этого интересного блога. Тема жидкокристаллических мониторов требует обязательного освещения еще одного конкурентного противостояния, и сегодня я представлю вам информацию, которая поможет определить: что лучше IPS или VA матрица.

Хотя данная задача не из легких, ведь такого значительного отличия, как в случае вы здесь не обнаружите. Но обо всем по порядку, который у нас уже отработан и начинается с истории и продолжается технологическими нюансами.

Идея использовать свойство жидких нематических кристаллов под воздействием электричества изменять поляризацию светового потока сначала получила коммерческую реализацию в экранах с TN матрицей. В ней каждый луч, идущий от подсветки к RGB фильтрам пикселя, проходил через модуль, который состоял из двух поляризационных решеток (ориентированных перпендикулярно для блокировки света), электродов и расположенного внутри кристалла со скрученной структурой расположения молекул (Twisted Nematic — TN).

Безусловно, появление в конце 80-х годов конкурента в лице тонкого, плоского экрана и с высоким разрешением, отсутствием мерцания и с низким энергопотреблением являлось, по-сути, технологической революцией. Но, к сожалению, по самому главному критерию (качество изображения) ЖК панели существенно проигрывали с ЭЛТ дисплеям. Именно это заставило ведущие компании совершенствовать технологию активных TFT матриц.

Современные технологии с 20-и летней историей

Переломным стал 1996, когда сразу несколько компаний представили свои разработки:

  • Hitachi разместила оба электрода со стороны первого поляризационного фильтра и поменяла ориентацию молекул в кристалле, скоммутировав их в плоскости (In-Plane Switching). Технология получила соответствующее название .
  • Нечто аналогичное придумали специалисты из NEC, они не заморачивались с названием обозначив свою инновацию просто SFT — super fine TFT (возможно, поэтому формулировка Хитачи оказалась более живучей, и в дальнейшем стала обозначением целого класса матриц).
  • Fujitsu пошла другим путем, минимизировала размеры электродов и поменяла направление их силового поля. Это было необходимо для того чтобы эффективно управлять вертикально сориентированными (Vertical Alignment – ) молекулами кристалла, которые приходилось разворачивать намного сильнее чтобы полностью пропустить (или максимально перекрыть) луч света.

Новые технологии отличались от TN тем, что в неактивном положении луч света оставался блокированным. Визуально это проявлялось в том, что битый пиксель теперь выглядел не светлым, а темным. Но чтобы перейти к другим кардинальным изменениям в технологиях, стоит отметить, что инновации не были идеальными. IPS и VA матрицы дорабатывались и совершенствоваться с участием ведущих электронных корпораций.

Наибольшую активность в этом проявляют Sony, Panasonic, LG, Samsung и, конечно, сами компании-разработчики. Благодаря им мы имеем множество вариаций IPS (S-IPS, H-IPS, P-IPS IPS-Pro) и две основные модификации VA технологии (MVA и PVA), каждая из которых имеет свои особенности.

Достоинства, которые важнее недостатков

Об истории развития технологий необходимо было написать, чтобы вы понимали: рассматривать IPS и VA матрицы мы будем в их усовершенствованном варианте. Определять в чем разница между ними я буду по основным критериям к качеству изображения и по особенностям эксплуатации:

  • Усложнение процесса изменения ориентации молекул жидкого кристалла в IPS и, еще в большей степени, в VA матрице повлекло за собой увеличение времени отклика и повышение энергозатрат. По сравнению с TN технологией они обе стали «тормозить» в динамических сценах, что выразилось в появлении шлейфа или размытости. Это существенный минус для VA мониторов, но, справедливости ради, стоит отметить, что по времени отклика IPS не намного лучше;
  • В принципе, то же самое можно сказать и об энергопотреблении матрицы. Но если в целом рассматривать ЖК монитор, в котором 95% электроэнергии потребляется подсветкой, то разницы по этому показателю между VA и IPS вообще не существует;
  • Теперь перейдем к параметрам, которые удалось существенно улучшить после внесения изменений в технологию активной ЖК матрицы. И начнем с угла обзора, который стал существенным достоинством, особенно в IPS экранах (на уровне 175º). В VA мониторах, даже после существенных доработок удалось достичь величины 170º, и то, при боковом просмотре качество изображения падает: картина тускнет и пропадает детализация в тенях;

  • Контрастность это один из критериев, по которому выбирают для использования в освещенном помещении, и если вы не собираетесь вести исключительно ночной образ жизни, то на нее стоит обратить внимание. Вы не забыли о том, что молекулы жидкого кристалла в VA матрице способны плотнее перерывать свет? Вместе со специфической формой решетки пикселя это обеспечивает в них наиболее глубокий черный цвет, а вместе с ним и наилучшую контрастность из всех ЖК мониторов. В IPS экранах этот показатель немного хуже, но все равно они демонстрируют отличный результат по сравнению с TN технологией;

  • Аналогичная ситуация и с яркостью. Обе матрицы по данному критерию намного лучше, чем TN, но в личном соревновании явным лидером являются VA мониторы. Опять-таки, из-за способности кристалла обеспечивать лучу света максимальную пропускную способность;
  • И чтобы закончить сравнение на приятной нейтральной ноте я расскажу о цветопередаче. И в VA, и в IPS она просто великолепная. Все потому, что наряду с отличной контрастностью для получения оттенка используется красный, зеленый и синий пиксель, яркость которого может определяться 8-и (а в новых моделях и 10-и) битным кодированием. В итоге это позволяет в обеих технологиях получить более 1 млрд. оттенков и сравнение здесь неуместно.

Если вы успели заметить, я стараюсь не использовать ценовой критерий при определении лучшей матрицы. Все потому, что разница несущественна, а докупить нужную функцию невозможно. Тем более, вы сами знаете: есть разные бренды, имя которых явно влияет на ценник.

Теперь перейдем практике, ведь я надеюсь, что многие из вас читали эту статью с конкретной целью: выяснить, что лучше IPS или VA матрица и какой экран покупать? Учитывая вышеперечисленные плюсы и недостатки этих технологий можно сделать следующие выводы:

  • Оба типа матриц выдают отличную картинку и используются в топовых моделях мониторов и телевизоров;
  • Любителям поиграть в шуттеры и гонки стоит отдать предпочтение IPS технологии;
  • Если экран работает на улице или в освещенной комнате – берите VA;
  • Если экран просматривается с разных точек – выбор в пользу IPS;
  • Нужно четкое отображение деталей (офисные документы, чертежи, диспетчерские схемы) – возьмите VA монитор.

В реальности приходится учитывать несколько факторов, поэтому каждый делает свой выбор экрана по типу матрицы.

На этом мой затянувшийся рассказ подошел к концу.

Я буду рад, если предоставленная мной информация оказалась для вас полезной. На этом буду заканчивать.

До свиданья, всем удачи!

Что важно при выборе монитора? Разрешение, диагональ экрана, частота обновления, время отклика? Несомненно, но важно также определиться, какая матрица необходима, ибо от ее типа зависит ряд характеристик, которые непосредственно влияют на выбор. В ряде случаев требования одни, для которых подойдут те или иные мониторы. В других случаях требуются другие характеристики, и некоторые экраны однозначно придется исключить из выбора. Какие типы матриц монитора существуют, чем различаются, в чем их различия – об этом и поговорим.

Современные мониторы

Ушли в прошлое CRT-дисплеи, изготавливаемые с применением вакуумной трубки (кинескопа). Они были громоздкие, тяжелые, и, естественно, для использования в мобильной технике не подходили абсолютно. Вытеснены они мониторами, экраны которых выполнены на жидких кристаллах, отсюда и название их ЖК-дисплеи, или по-иностранному – LCD (Liquid Crystal Displays).

О достоинствах и недостатках распространяться не буду, они известны, да и не столь важны сейчас, не об этом сегодня разговор. Надо разобраться, какие типа матриц используются в мониторах, в чем их отличие, в каких случаях разумнее использовать один вид, а в каких – другой.

TN (Twisted Nematic)

Один из самых старых типов матриц, до сих пор актуальный и используемый. В настоящее время применяется ее модифицированная версия, маркируемая TN+film. Популярность ее зиждется на двух основных преимуществах: быстродействии (низкое время отклика и задержки) и низкой цене. Действительно, время отклика порядка 1 мс – это в порядке вещей.

Даже недостатки, присущие этой технологии изготовления экранов, не в силах отправить ее на покой. А минусов хватает. Это и небольшие углы обзора, и неважная цветопередача, и невысокая контрастность, и недостаточная глубина черного цвета. Хотя, если экран расположен прямо перед глазами владельца, то проблема с углами обзора несколько снижает свою остроту.

Ухудшается положение еще и тем, что разные матрицы от разных производителей могут серьезно отличаться друг от друга. Если в дорогих игровых моделях ноутбуков или игровых мониторах может устанавливаться вполне сносный экран, то в бюджетных устройствах качество дисплея может быть весьма посредственным.

Как это работает

Сам экран представляет собой «бутерброд» из двух поляризующих фильтров, между которыми расположены электроды на прозрачных подложках с обеих сторон экрана, двух металлических пластин и, в середине, слоя жидких кристаллов. С внешней стороны экрана устанавливается светофильтр.

На стеклянные пластины нанесены бороздки, причем во взаимно перпендикулярном направлении, что задает первоначальную ориентацию кристаллов. Благодаря такому расположению бороздок, жидкие кристаллы закручены в спираль, откуда, собственно, и пошло название технологии Twisted Nematic.

Если напряжения на электродах нет, то расположенные по спирали кристаллы поворачивают плоскость поляризации света таким образом, что он проходит через второй (наружный) поляризационный фильтр. Если напряжение на электроны подано, то, в зависимости от уровня этого напряжения, жидкие кристаллы разворачиваются, изменяя интенсивность проходящего света. При определенном напряжении плоскость поляризации света не будет изменяться, и второй фильтр полностью поглотит свет.

Наличие двух электродов позволяет улучшить энергоэффективность, а частичный поворот кристаллов благотворно влияет на быстродействие матрицы.

Из-за того, что при отсутствии напряжения кристаллы пропускают свет, при возникновении дефектов в матрице («битые пиксели») они представляют собой светящуюся белую точку. В других технологиях такие точки темные.

Идентифицировать «на глаз» матрицу TN можно, если посмотреть на включенный экран под углом. И чем больше он (угол) будет, тем более блеклыми будут становиться цвета, тем менее контрастным будет становиться изображение. В некоторых случаях возможно даже инвертирование цветов.

IPS (In-Plane Switching)

Мониторы с такой матрицей сейчас наиболее частые конкуренты мониторам с TN-экраном. Практически все недостатки последних удалось побороть, к сожалению, пожертвовав теми достоинствами, которые были у предыдущей технологии. Мониторы с IPS матрицей априори дороже и имеют большее время отклика. Для игровых систем это может оказаться существенным аргументом для того, чтобы сделать выбор в пользу TN.

Зато для того, кто профессионально работает с изображениями, кому необходима качественная цветопередача, широкий цветовой охват, мониторы с такой матрицей — оптимальный выбор. К тому же с углами обзора тут проблем нет, черный цвет гораздо больше похож на черный, а не выглядит неким оттенком серого, как это нередко бывает на TN-экранах.

Как это работает

Между двумя поляризационными фильтрами располагается слой управляющих микропленочных транзисторов и слой жидких кристаллов, имеющих светофильтры трех основных цветов. Кристаллы расположены вдоль плоскости экрана.

Плоскости поляризации фильтров перпендикулярны друг другу, поэтому, при отсутствии напряжения, свет, проходящий через первый фильтр и поляризуемый в одной плоскости, задерживается вторым фильтром, обеспечивая глубокий черный цвет. Кстати, именно поэтому в случае появления «битого пикселя» на экране он выглядит как черная точка, а не белая, как бывает в случае с TN-матрицами.

При появлении напряжения на управляющих электродах кристаллы поворачиваются опять-таки вдоль плоскости экрана, пропуская свет. Отсюда вытекает один из недостатков технологии – большее время отклика. Это связано именно с необходимостью поворота всего массива кристаллов, на что тратится время. Зато обеспечиваются углы обзора вплоть до 178° и отличная цветопередача.

Есть и еще минусы у этой технологии. Это большее энергопотребление, т. к. расположение электродов только с одной стороны вынудило увеличить напряжение для обеспечения поворота всего массива кристаллов. Используемые лампы так же более мощные, чем в случае с TN, что дополнительно увеличивает потребление энергии.

Варианты IPS

Технология не стоит на месте, в нее вносятся улучшения, которые позволили существенно снизить время отклика и цену. Так, существуют следующие варианты IPS-матриц:

  • S-IPS (Super-IPS). Второе поколение технологии IPS. Экран имеет несколько измененную пиксельную структуру, сделаны улучшения для снижения времени отклика, приблизившись по этому параметру к характеристикам TN-матриц.
  • AS-IPS (Advanced Super-IPS). Следующее улучшение технологии IPS. Главная цель состояла в повышении контрастности панелей S-IPS и увеличении их прозрачности, став ближе по этому параметру к S-PVA.
  • H-IPS. Изменилась структура пикселей, увеличилась плотность их размещения, что позволило еще больше увеличить контрастность и сделать изображение более однородным.
  • H-IPS A-TW (Horizontal IPS with Advanced True Wide Polarizer). Разработка компании LG. За основу взята панель H-IPS, в которую добавлен цветовой фильтр TW (True White - «настоящий белый»), что улучшило белый цвет. Применение поляризационной пленки компании NEC (технология Advanced True Wide Polarizer) позволило избавиться от возможных засветов при больших углах обзора («глоу-эффект») и, одновременно, увеличить эти углы. Этот тип матриц применяется в профессиональных мониторах.
  • IPS-Pro (IPS-Provectus). Разработка компании BOE Hydis. Уменьшено межпиксельное расстояние, увеличены углы обзора и яркость.
  • AFFS (Advanced Fringe Field Switching, иногда называют – S-IPS Pro).
  • e-IPS (Enhanced IPS). Увеличение светопроницаемости позволило использовать более экономичные и дешевые лампы подсветки. Уменьшилось время отклика, достигнув значений в 5 мс. Мониторы с такими матрицами обычно имеют диагональ до 24 дюймов.
  • P-IPS (Professional IPS). Профессиональные матрицы с 30-битной глубиной цвета, увеличенным количеством возможных ориентаций субпикселей (1024 против 256 у остальных), что улучшило цветопередачу.
  • AH-IPS (Advanced High Performance IPS). Матрицы этого типа отличаются самыми большими углами обзора, высокой яркостью и контрастностью, малым временем отклика.
  • Разработка компании Samsung, внесшая улучшения в исходную технологию IPS. Подробности компанией не разглашаются, но удалось снизить энергопотребление, время отклика сделать сходным с S-IPS. Правда, контрастность несколько ухудшилась, да и с равномерностью подсветки не так все гладко.

VA (Vertical Alignment)/MVA (Multi-Domain Vertical Alignment)

Технология, разработанная компанией Fujitsu. Во многом такие экраны занимают промежуточное положение между TN и IPS вариантами. Так, углы обзора и цветопередача лучше, чем у TN, но похуже, чем у IPS. Аналогично и со временем отклика. В то же время стоимость их ниже, чем у IPS.

Как это работает

Принцип действия следует из названия (ну или название отражает принцип действия данной технологии). Кристаллы расположены вертикально, т. е. перпендикулярно подложке. При отсутствии напряжения ничто не мешает прохождению света через кристаллы, а второй поляризационный фильтр полностью задерживает свет и обеспечивает глубокий черный цвет. Это одно из достоинств технологии.

При приложении напряжения кристаллы разворачиваются, пропуская цвет. В первых матрицах угол обзора был очень мал. Это удалось исправить в модифицированном варианте технологии – MVA, где использовались несколько кристаллов, расположенных друг за другом и отклоняющихся синхронно.

Варианты VA/MVA

Существует несколько разновидностей этой технологии, к развитию которой «приложили руку» разные компании:

  • PVA (Patterned Vertical Alignment). Свой вариант технологии представила компания Samsung. Подробности не разглашаются, но PVA имеет чуть лучшую контрастность и немного меньшую стоимость. В целом, варианты весьма близки и часто между ними не делается различий, указывая MVA/PVA.
  • S-PVA (Super PVA). Совместная разработка Sony и Samsung. Улучшены углы обзора.
  • S-MVA (Super MVA). Разработка компании Chi Mei Optoelectronics/Innolux. Помимо увеличения углов обзора, улучшена контрастность.
  • A-MVA (Advanced MVA). Дальнейшее развитие S-MVA от компании AU Optronics. Удалось уменьшить время отклика.

Данный вариант матриц – оптимальный компромисс между дешевыми, но с кучей недостатков, TN, и более качественными, но более дорогими IPS. Единственный, пожалуй, недостаток MVA – это недостаток цветопередачи при увеличении угла обзора, особенно в полутонах. В повседневном использовании это практически незаметно, но у профессионалов, работающих с изображениями, могут быть сомнения по поводу таких матриц.

OLED (Organic Light Emitting Diode)

Технология, существенно отличающаяся от тех, что используются ныне. Стоимость матриц, особенно больших диагоналей, сложность производства пока что препятствуют широкому использованию этой технологии в производстве мониторов. Те модели, которые есть, стоят дорого и редки.

Как это работает

В основе технологии лежит использование углеродных органических материалов. Под напряжением они излучают определенный цвет, а при его отсутствии – полностью неактивны. Это позволяет, во-первых, полностью избавиться от подсветки, а во-вторых, обеспечить идеальную глубину черного цвета. Ведь ничего не светится и не фильтруется, посему и претензий к черному цвету быть не может.

Экраны OLED обеспечивают высокие значения яркости и контрастности, отличные углы обзора без искажений. Энергоэффективность на высоком уровне. Скорость отклика недоступна даже TN матрицам.

И все же ряд недостатков пока что сдерживает применение таких экранов. Это и небольшое время работы (экраны склонны к «выгоранию» — эффекту, который был присущ плазменным панелям), сложный процесс производства с довольно большим количеством брака, что повышает стоимость таких матриц.

QD (Quantum Dots)

Еще одна перспективная технология, основанная на использовании квантовых точек. На данный момент мониторов, выполненных по этой технологии, мало, да и стоят они недешево. Технология позволяет преодолеть практически все недостатки, присущие всем остальным вариантам матриц, используемых в дисплеях. Единственный недостаток – глубина черного не дотягивает до того уровня, что есть у OLED экранов.

Как это работает

В основе технологии лежит использование нанокристаллов размером от 2 до 10 нанометров. Разница в размерах не случайна, т. к. именно в этом и кроется вся хитрость. При подаче на них напряжения, они начинают излучать свет, причем с определенной длиной волны (т. е. определенного цвета), которая зависит от размеров этих кристаллов. Цвет также зависит от материала, из которых изготовлены нанокристаллы:

  • Красный цвет – размер 10 нм, сплав кадмия, цинка и селена.
  • Зеленый цвет – размер 6 нм, сплав кадмия и селена.
  • Синий цвет – размер 3 нм, соединение цинка и серы.

В качестве подсветки используются синие светодиоды, а квантовые точки, отвечающие за зеленый и красный цвет, наносятся на подложку, причем сами эти точки никак не упорядочены. Они просто смешаны друг с другом. Попадающий на них синий свет от светодиода заставляет их светиться с определенной длиной волны, формируя цвет.

Эта технология позволяет обойтись без установки светофильтров, т. к. уже заранее получен нужный цвет. Тем самым улучшаются яркость и контрастность, т. к. удается избавиться от одного из слоев, из которых состоит экран.

В отличие от OLED, глубина черного немного ниже. Стоимость таких экранов пока что высока.

Сравнение матриц, выполненных по разным технологиям

В таблице краткое сравнение описанных типов матриц, из которого может быть понятно, в чем сильны, а в чем проигрывают те или иные типы экранов.

Тип матрицы TN IPS MVA/PVA OLED QD
Время отклика Низкое Среднее Среднее Очень низкое Среднее
Углы обзора Малые Хорошие Средние Отличные Отличные
Цветопередача На низком уровне Хорошая Хорошая, чуть хуже, чем у IPS Отличная Отличная
Контрастность Средняя Хорошая Хорошая Отличная Отличная
Глубина черного Низкая Хорошая-отличная Отличная Отличная Чуть хуже, чем у OLED
Стоимость Низкая Средняя-высокая Средняя Высокая Высокая

Заключение. Типы матриц монитора – какие выбрать?

не избалованы выбором, в большинстве случаев используются либо TN, либо IPS экраны. За редким исключением каких-либо дорогих, статусных девайсов, где применяются более дорогие типы матриц.

Разве что можно выбрать между средними по качеству дисплеями «на каждый день» и более качественными, которые и для офиса подойдут, и отредактировать фотографии позволят.

Пользователи обычных мониторов могут выбрать все, что душе может быть угодно, а финансами позволено. Для экономии, если речь идет об играх или офисной работе, вполне сгодится монитор с TN экраном.

Универсальным решением является монитор с IPS матрицей, или, как вариант, MVA. Широкие углы обзора, черный цвет, больше похожий на действительно черный, отличная цветопередача вам обеспечены. Вопрос только в стоимости и большем, чем у TN, времени отклика. Впрочем, игровые мониторы на таких матрицах показывают себя отлично, и если цели сэкономить, во что бы то ни стало, нет, то, определенно, стоит рассмотреть такой вариант.

Ну а у профессионалов вообще, фактически, альтернатив нет. Выбор между просто IPS и опять-таки IPS, но с каким-либо дополнением — IPS-Pro, H-IPS и т. п.

Перспективные варианты пока что на рынке представлены слабо, но, если так уж хочется иметь что-то особенное, то почему нет?

Жидкие кристаллы были открыты еще в 1888 году. Но практическое применение они нашли только тридцать лет назад. «Жидкокристаллическим» называют переходное состояние вещества, при котором оно приобретает текучесть, но при этом не теряет свою кристаллическую структуру. Наибольший практический интерес, как оказалось, представляют оптические свойства жидких кристаллов. Благодаря сочетанию полужидкого состояния и кристаллической структуры можно легко менять способность пропускать свет.

Типы ЖК-матриц

Первым массовым продуктом с использованием жидких кристаллов стали электронные часы. Монохромный дисплей состоял, как известно, из отдельных полей, заполненных жидкими кристаллами. При подаче напряжения, с помощью которого кристаллы упорядочиваются, нужные поля препятствуют прохождению света и выглядят черными на светлом фоне. Цветные дисплеи появились, когда размеры ячейки удалось значительно уменьшить и снабдить каждую цветным фильтром. Кроме того, в современных ЖК мониторах используется задняя подсветка.

Для подсветки используется обычно 4 или 6 ламп и зеркала для более обеспечения равномерности. В основе работы ЖК-панели - поляризация света. На пути светового потока две поляризационные пленки с перпендикулярными направлениями поляризации. То есть в сумме эти две пленки задерживают весь свет. Расположенные между пленками жидкие кристаллы разворачивают часть потока, поляризованного первой пленкой, и таким образом регулируют свечение экрана.

Схема субпикселя ЖК-матрицы.
Каждый пиксель составляют синий, красный и зеленый субпиксели

Слой жидкокристаллического вещества «зажат» между двумя направляющими пленками с мельчайшими засечками, по направлению которых и выстраиваются кристаллы. Изменить направление ориентации кристаллов можно, например, с помощью электрического импульса, как это и делается в матрицах ЖК-мониторов. В современных матрицах каждая ячейка имеет собственный транзистор, резистор и конденсатор. Собственно в цветных матрицах каждый пиксель представляет собой три ячейки: красную, зеленую и синюю.

Матрица TN. Самая старая и самая распространенная

Самый старый тип матриц, из тех, которые сейчас применяются - TN. Название технологии расшифровывается как Twisted Nematic. Нематические жидкокристаллические субстанции состоят из продолговатых кристаллов с пространственной ориентацией, но без жесткой структуры. Такое вещество легко поддается внешним воздействиям.

В матрицах TN кристаллы выстроены параллельно плоскости экрана, а верхний и нижний слой кристаллов повернуты перпендикулярно относительно друг друга. Все остальные «скручены» по спирали. Таким образом, весь пропущенный свет так же скручивается и беспрепятственно проходит через внешнюю поляризующую пленку. Так что в выключенном состоянии ячейка TN матрицы светится, а при подаче напряжения кристаллы постепенно проворачиваются. Чем выше напряжение, тем больше кристаллов разворачивается, и тем меньше проходит света. Как только все кристаллы развернутся параллельно световому потоку, ячейка «закрывается». Но для TN матриц добиться идеально черного цвета очень трудно.

Кристаллы в матрице TN "скручены" по спирали (1).
При подаче напряжения они начинают поворачиваться (2).
Когда все кристаллы перпендикулярны поверхности (3), свет не проходит.

Главная проблема TN матриц в несогласованности поворота кристаллов: одни уже развернуты полностью, другие только начали поворачиваться. Из-за этого происходит рассеивание светового потока и, в конечном счете, картинка под разными углами выглядит не одинаково. Горизонтальные углы обзора современных матриц можно считать приемлемыми, но при повороте по вертикали даже в небольших пределах, искажения существенные. Цветопередача матриц TN далека от идеальной - они в принципе не могут выводить полную палитру цветов, компенсирую недостаток оттенков с помощью хитрых алгоритмов. Такие алгоритмы с частотой не заметной глазу воспроизводят в ячейке попеременно оттенки, ближайшие к тому, который воспроизвести не удается. Зато технология TN обеспечивает максимальную скорость срабатывания ячейки, минимальное энергопотребление и максимально дешева. Эти два обстоятельства и делают самую старую технологию самой популярной и самой распространенной.

IPS. Идеально для фото и графики. Но дорого

Второй по времени разработки стала технология IPS (In Plane Switch). Такие матрицы производят заводы Hitachi, LG.Philips. NEC производит матрицы сделанные по сходной технологии, но с собственной аббревиатурой SFT (Super Fine TFT).

Как следует из названия технологии, все кристаллы расположены постоянно параллельно плоскости панели и поворачиваются одновременно. Для этого пришлось расположить на нижней стороне каждой ячейки по два электрода. В выключенном состоянии ячейка черная, так что если она «умерла», на экране будет черная точка. А не постоянно светящаяся, как у TN.


В матрице IPS кристаллы всегда параллельны поверхности экрана

IPS технология обеспечивает наилучшую цветопередачу и максимальные углы обзора. Из существенных недостатков - болшее, чем у TN , время отклика, более заметная межпиксельная сетка и высокая цена. Улучшенные матрицы получили название S -IPS и SA -SFT (соответственно у LG .Philips и NEC ). Они обеспечивают уже приемлемое время отклика на уровне 25 мс, а новейшие и того меньше - 16 мс. Благодаря хорошей цветопередаче и углам обзора IPS матрицы стали стандартом для графических профессиональных мониторов.

MVA/PVA. Разумный компромисс?

Как компромисс между TN и IPS можно рассматривать разработанную Fujitsu технологию VA (Vertical Alignment). В матрицах VA кристаллы в выключенном состоянии расположены перпендикулярно плоскости экрана. Соответственно черный цвет обеспечивается максимально чистый и глубокий. Но при повороте матрицы относительно направления взгляда, кристаллы будут видны не одинаково. Для решения проблемы применяется мультидоменная структура. Разработанная Fujitsu технология Multi-Domain Vertical Alignment (MVA) предусматривает выступы на обкладках, которые определяют направление поворота кристаллов. Если два поддомена поворачивается в противоположных направлениях, то при взгляде сбоку один из них будет темнее, а другой светлее, таким образом для человеческого глаза отклонения взаимно компенсируются. В матрицах PVA , разработанных Samsung нет выступов, и в выключенном состоянии кристаллы строго вертикальны. Для того, чтобы кристаллы соседних субдоменов поворачивались в противоположных направлениях, нижние электроды сдвинуты относительно верхних.


В матрицах VA типа в выключенном состоянии кристаллы перпендикулярны поверхности экрана

Для уменьшения времени отклика в матрицах Premium MVA и S -PVA применяется система динамического повышения напряжения для отдельных участков матрицы, которую обычно называют Overdrive . Цветопередача матриц PMVA и SPVA почти так же хороша как и у IPS , время отклика немного уступает TN , углы обзора максимально широкие, черный цвет наилучший, яркость и контраст максимально возможные среди всех существующих технологий. Однако даже при небольшом отклонении направления взгляда от перпендикуляра, даже на 5–10 градусов можно заметить искажения в полутонах. Для большинства это останется незамеченным, но профессиональные фотографы продолжают за это недолюбливать технологии VA .

Что выбрать?

Для домашнего использования и для работы в офисе часто цена является решающим аргументом, и из-за этого мониторы с матрицей TN пользуются максимальной популярностью. Они обеспечивают приемлемое качество изображения при минимальном времени отклика, что является критически важным параметром для любителей динамичных игр. PVA и MVA матрицы не столь широко распространены из-за более высокой цены. Они обеспечивают очень высокий контраст (особенно PVA ), большой запас по яркости и хорошую цветопередачу. В качестве основы для домашнего мультимедийного центра (замена телевизора), это лучший выбор. Матрицы IPS все реже устанавливаются в мониторы с диагональю до 20 дюймов. По качеству лучшие модели S -IPS и SA -SFT не уступают CRT мониторам и все чаще применяются профессионалами в области фото, полиграфии и дизайна. Практические рекомендации по выбору монитора можно прочитать в статье «Выбираем ЖК-монитор. Что предпочесть фотографу, геймеру и домохозяйке?»

Немного помечтаем

Совсем недавно, т.е. лет 15 назад, вряд ли многие предполагали, что ЖК-мониторы смогут вытеснить кинескопные. Качество LCD было низким, а цена крайне высокой. Но и сейчас нельзя назвать технологию производства панелей на жидких кристаллах идеальной. Для улучшения цветопередачи, увеличения контрастности и обеспечения равномерности подсветки в профессиональном NEC Reference 21 применена диодная подсветка. Стоит этот монитор около $6000 и пока его можно считать скорее полиграфическим оборудованием, чем компьютерной перефирией. Но мы знаем множество примеров, когда профессиональные технологии "спускаются" к любителям.

Многие крупные компании (Sanyo, Samsung, Epson) разрабатывают экраны на основе OLED - органических кристаллов. Сами кристаллы испускают свет при подаче напряжения, эти экраны чрезвычайно экономичные, яркие и контрастные. Но пока применяются только в мелкой портативной технике из-за дороговизны и технических проблем, связанных с долговечностью, воспроизведением некоторых цветов. В совсем отдаленной перспективе могут появиться и абсолютно новые технологии, о которых сейчас слышали только специалисты, а экран можно будет свернуть в трубочку или наклеить на стену. А может быть и не будет мониторов в нашем привычном понимании? А может быть, все перейдут на проекторы? И в качестве экрана можно будет использовать практически любую поверхность. Заманчивая перспектива.