Центральная нервная система где. Функции и отделы нервной системы. Строение и функции спинного мозга

1. Управление деятельностью опорно-двигательного ап­парата. ЦНС регулирует тонус мышц и посредством его перерас­пределения поддерживает естественную позу, а при нарушении восстанавливает ее, инициирует все виды двигательной активнос­ти (физическая работа, физкультура, спорт, любое перемещение организма).

2. Регуляция работы внутренних органов осуществляет­ся вегетативной нервной системой и эндокринными железами; обеспечивает интенсивность их функционирования согласно потребностям организма в различных условиях его жизнедея­тельности.


3. Обеспечение сознания и всех видов психической дея­тельности. Психическая деятельность - это идеальная, субъек­тивно осознаваемая деятельность организма, осуществляемая с помощью нейрофизиологических процессов. И. П. Павлов ввел представление о высшей и низшей нервной деятельности. Высшая нервная деятельность - это совокупность нейрофизиологиче­ских процессов, обеспечивающих сознание, подсознательную пе­реработку информации и целенаправленное поведение организма в окружающей среде. Психическая деятельность осуществляется с помощью высшей нервной деятельности и протекает осознанно, т.е. во время бодрствования, независимо от того, сопровождается она физической работой или нет. Высшая нервная деятельность про­текает во время бодрствования и сна (см. разделы 15.8, 15.9, 15.10). Низшая нервная деятельность - это совокупность нейрофизиоло­гических процессов, обеспечивающих осуществление безусловных рефлексов.

4. Формирование взаимодействия организма с окружаю­щей средой. Это реализуется, например, с помощью избегания или избавления от неприятных раздражителей (защитные реакции орга­низма), регуляции интенсивности обмена веществ при изменении температуры окружающей среды. Изменения внутренней среды организма, воспринимаемые субъективно в виде ощущений, также побуждают организм к той или иной целенаправленной двигатель­ной активности. Так, например, в случае недостатка воды и при по­вышении осмотического давления жидкостей организма возника­ет жажда, которая инициирует поведение, направленное на поиск и прием воды. Любая деятельность самой ЦНС реализуется в ко­нечном итоге с помощью функционирования отдельных клеток.

ФУНКЦИИ КЛЕТОК ЦНС И ЛИКВОРА,

КЛАССИФИКАЦИЯ НЕЙРОНОВ ЦНС,

ИХ МЕДИАТОРЫ И РЕЦЕПТОРЫ

Мозг человека содержит около 50 миллиардов нервных клеток, взаимодействие между которыми осуществляется посредством множества синапсов, число которых в тысячи раз больше количе­ства самих клеток (10 15 -10 16), так как их аксоны делятся много­кратно дихотомически, поэтому один нейрон может образовы­вать до тысячи синапсов с другими нейронами. Нейроны оказывают свое влияние на органы и ткани также посредством синапсов.

А. Нервная клетка (нейрон) является структурной и функци­ональной единицей ЦНС, она состоит из сомы (тела клетки с яд-


ром) и отростков, представляющих собой большое число дендри-тов и один аксон (рис. 5.5). Потенциал покоя (ПП) нейрона состав­ляет 60-80 мВ, потенциал действия (ПД) -80-110 мВ. Сома и ден­дриты покрыты нервными окончаниями - синаптическими бутонами и отростками глиальных клеток. На одном нейроне чис­ло синаптических бутонов может достигать 10 тысяч (см. рис. 5.5). Аксон начинается от тела клетки аксонным холмиком. Диаметр тела клетки составляет 10-100 мкм, аксона - 1-6 мкм, на периферии длина аксона может достигать метра и более. Нейроны мозга обра­зуют колонки, ядра и слои, выполняющие определенные функции.


Клеточные скопления образуют серое вещество мозга. Между клет­ками проходят немиелинизированные и миелинизированные не­рвные волокна (дендриты и аксоны нейронов).

Функциями нервной клетки являются получение, переработ­ка и хранение информации, передача сигнала другим нервным клет­кам, регуляция деятельности эффекторных клеток различных ор­ганов и тканей организма. Целесообразно выделить следующие функциональные структуры нейрона.

1. Структуры, обеспечивающие синтез макромолекул, - это сома (тело нейрона), выполняющая трофическую функцию по от­ношению к отросткам (аксону и дендритам) и клеткам-эффекторам. Отросток, лишенный связи с телом нейрона, дегенерирует. Макро­молекулы транспортируются по аксону и дендритам.

2. Структуры, воспринимающие импульсы от других нервных клеток, - это тело и дендриты нейрона с расположенными на них шипиками, занимающими до 40% поверхности сомы нейрона и ден-дритов. Причем, если шипики не получают импульсацию, они исчезают. Импульсы могут поступать и к окончанию аксона - аксо-аксонные синапсы, например, в случае пресинаптического тормо­жения.

3. Структуры, где обычно возникает потенциал действия (гене­раторный пункт ПД), - аксонный холмик.

4. Структуры, проводящие возбуждение к другому нейрону или к эффектору, - аксон.

5. Структуры, передающие импульсы на другие клетки, - си­напсы.

Б. Классификация нейронов ЦНС. Нейроны делят на следу­ющие основные группы.

1. В зависимости от отдела ЦНС выделяют нейроны сомати­ческой и вегетативной нервной системы.

2. По источнику или направлению информации нейроны под­разделяют на: а) афферентные, воспринимающие с помощью ре­цепторов информацию о внешней и внутренней среде организма и передающие ее в вышележащие отделы ЦНС; б) эфферентные, передающие информацию к рабочим органам - эффекторам; не­рвные клетки, иннервирующие эффекторы, иногда называют эф-фекторными; эффекторные нейроны спинного мозга (мотонейроны) делят на а- иу-мотонейроны; в) вставочные (интернейроны), обес­печивающие взаимодействие между нейронами ЦНС.

3. По медиатору, выделяющемуся в окончаниях аксонов, раз­личают нейроны адренергические, холинергические, серотонинер-гические и т. д.

4. По влиянию - возбуждающие и тормозящие.


В. Глиальные клетки (нейроглия - «нервный клей») более многочисленны, чем нейроны, составляют около 50% объема ЦНС. Они способны к делению в течение всей жизни. Размеры глиальных клеток в 3-4 раза меньше нервных, с возрастом их число увеличивается (число нейронов уменьшается). Тела нейронов, как и их аксоны, окружены глиальными клетками. Глиальные клетки выполняют несколько функций: опорную, защитную, изолирующую, обменную (снабжение нейронов питательными веществами). Микроглиальные клетки способны к фагоцитозу, ритмическому изменению своего объема (период «сокращения» -1,5 мин, «расслабления» - 4 мин). Циклы изменения объема повторяются через каждые 2-20 час. Полагают, что пульсация способствует продвижению аксоплазмы в нейронах и влияет на ток межклеточной жидкости. Мембранный потенциал клеток нейроглии составляет 70-90 мВ, однако ПД они не генерируют, возникают только лишь локальные токи, электротонически распространяющиеся от одной клетки к другой. Процессы возбуж­дения в нейронах и электрические явления в глиальных клетках, по-видимому, взаимодействуют."

Г. Ликвор - бесцветная прозрачная жидкость, заполняющая мозговые желудочки, Спинномозговой канал и субарахноидальное пространство. Ее происхождение связано с интерстициальной жид­костью мозга, значительная часть ликвора образуется сосудисты­ми сплетениями желудочков мозга. Непосредственной питатель­ной средой клеток мозга является интерстициальная жидкость, в которую клетки выделяют также и продукты своего обмена. Лик-вор представляет собой совокупность фильтрата плазмы крови и интерстициальной жидкости: она содержит около 90% воды и око­ло 10% сухого остатка (2% - органические, 8% - неорганические вещества).

Д. Медиаторы и рецепторы синапсов ЦНС. Медиаторами синапсов ЦНС являются многие химические вещества, разнород­ные в структурном отношении (в головном мозге к настоящему времени обнаружено около 30 биологически активных веществ). Вещество, из которого синтезируется медиатор (предшественник медиатора), попадает в нейрон или его окончание из крови или ликвора, в результате биохимических реакций под действием ферментов в нервных окончаниях превращается в соответствую­щий медиатор и накапливается в синаптических везикулах. По химическому строению медиаторы можно разделить на несколько групп, главными из которых являются амины, аминокислоты, полипептиды. Достаточно широко распространенным медиатором является ацетилхолин.


Согласно принципу Дейла, один нейрон синтезирует и ис­пользует один и тот же медиатор или одни и те же медиаторы во всех разветвлениях своего аксона («один нейрон - один меди­атор»). Кроме основного медиатора, как выяснилось, в окончаниях аксона могут выделяться и другие - сопутствующие медиаторы (ко-медиаторы), играющие модулирующую роль и более медленно дей­ствующие. Однако в спинном мозге установлено два быстродейству­ющих медиатора в одном тормозном нейроне - ГАМК и глицин и даже один тормозной (ГАМК) и один возбуждающий (АТФ). По­этому принцип Дейла в новой редакции сначала звучал: «Один ней­рон - один быстрый медиатор», а затем: «Один нейрон - один быс­трый синаптический эффект» (предполагаются и другие варианты).

Эффект действия медиатора зависит в основном от свойств постсинаптической мембраны и вторых посредников. Это явление особенно ярко демонстрируется при сравнении эффектов отдельных медиаторов в ЦНС и в периферических синапсах организма. Ацетил­холин, например, в коре мозга при микроаппликациях на разные нейроны может вызывать возбуждение и торможение, в синапсах сер­дца - торможение, в синапсах гладкой мускулатуры желудочно-ки­шечного тракта - возбуждение. Катехоламины стимулируют сердеч­ную деятельность, но тормозят сокращения желудка и кишечника.

5.7. МЕХАНИЗМ ВОЗБУЖДЕНИЯ НЕЙРОНОВ ЦНС

В любых химических синапсах (ЦНС, вегетативных ганглиях, в нервно-мышечном) механизмы передачи сигнала в общих чертах подобны (см. раздел 2.1). Однако в возбуждении нейронов ЦНС имеются характерные особенности, основными из которых явля­ются следующие.

1. Для возбуждения нейрона (возникновения ПД) необ­ходимы поток афферентных импульсов и их взаимодействие. Это объясняется тем, что один пришедший к нейрону импульс вы­зывает небольшой возбуждающий постсинаптический потенциал (ВПСП, рис. 5.6) - всего 0,05 мВ (миниатюрный ВПСП). Один пу­зырек содержит до нескольких десятков тысяч молекул медиатора, например ацетилхолина. Если учесть, что пороговый потенциал нейрона 5-10 мВ, ясно, что для возбуждения нейрона требуется множество импульсов.

2. Место возникновения генераторных ВПСП, вызываю­щих ПД нейрона. Подавляющее большинство нейрональных си­напсов находится на дендритах нейрона. Однако наиболее эффек­тивно вызывают возбуждение нейрона синаптические контакты,

расположенные на теле нейрона. Это связано с тем, что постси-наптические мембраны этих синапсов располагаются в непосред­ственной близости от места первичного возникновения ПД, рас­полагающегося в аксонном холмике. Близость соматических синапсов к аксонному холмику обеспечивает участие их ВПСП в механизмах генерации ПД. В этой связи некоторые авторы предла­гают называть их генераторными синапсами.

3. Генераторный пункт нейрона, т.е. место возникнове­ния ПД, - аксонный холмик. Синапсьг на нем отсутствуют, отли­чительной особенностью мембраны аксонного холмика является вы-" сокая возбудимость, в 3-4 раза превосходящая возбудимость сома-дендритной мембраны нейрона, что объясняется более высо­кой концентрацией Ыа-каналов на аксонном холмике. ВПСП элек-тротонически достигают аксонный холмик, обеспечивая здесь уменьшение мембранного потенциала до критического уровня. В этот момент возникает ПД. Возникший в аксонном холмике ПД, с одной стороны, ортодромно переходит на аксон, с другой - анти­дромно на тело нейрона.

4. Роль дендритов в возникновении возбуждения до сих пор дискутируется. Полагают, что множество ВПСП, возникающих на дендритах, электротонически управляют возбудимостью нейрона. В этой связи дендритные синапсы получили название модулятор­ных синапсов.

5.8. ХАРАКТЕРИСТИКА РАСПРОСТРАНЕНИЯ ВОЗБУЖДЕНИЯ В ЦНС

Особенности распространения возбуждения в ЦНС объясняют­ся ее нейронным строением - наличием химических синапсов, мно­гократным ветвлением аксонов нейронов, наличием замкнутых ней­ронных путей. Этими особенностями являются следующие.


1. Одностороннее распространение возбуждения в нейрон­ных цепях, в рефлекторных дугах. Одностороннее распростране­ние возбуждения от аксона одного нейрона к телу или дендритам другого нейрона, но не обратно, объясняется свойствами химиче­ских синапсов, которые проводят возбуждение только в одном на­правлении.

2. Замедленное распространение возбуждения в ЦНС по сравнению с нервным волокном объясняется наличием на путях распространения возбуждения множества химических синапсов. Суммарная задержка передачи возбуждения в нейроне до возник­новения ПД достигает величины порядка 2 мс.

3. Иррадиация (дивергенция) возбуждения в ЦНС объяс­няется ветвлением аксонов нейронов, их способностью устанавли­вать многочисленные связи с другими нейронами, наличием вста­вочных нейронов, аксоны которых также ветвятся (рис. 5.7 - А).

4. Конвергенция возбуждения (принцип общего конечного пути) - схождение возбуждения различного происхождения по нескольким путям к одному и тому же нейрону или нейронному пулу (принцип шеррингтоновской воронки). Объясняется наличием мно­гих аксонных коллатералей, вставочных нейронов, а также тем, что афферентных путей в несколько раз больше, чем эфферентных ней­ронов. На одном нейроне ЦНС могут располагаться до 10 000 си­напсов, на мотонейронах - до 20 000 (рис. 5.7 - Б).

5. Циркуляция возбуждения по замкнутым нейронным цепям, которая может продолжаться минутами и даже часами (рис. 5.8).


6. Распространение возбуждения в центральной нервной системе легко блокируется фармакологическими препаратами, что находит широкое применение в клинической практике. В физиоло­гических условиях ограничения распространения возбуждения по ЦНС связаны с включением нейрофизиологических механизмов торможения нейронов.

Рассмотренные особенности распространения возбуждения дают возможность подойти к пониманию отличительных свойств нервных центров.

СВОЙСТВА НЕРВНЫХ ЦЕНТРОВ

Рассматриваемые ниже свойства нервных центров связаны с некоторыми особенностями распространения возбуждения в ЦНС, особыми свойствами химических синапсов и свойствами мембран нервных клеток. Основными свойствами нервных центров являют­ся следующие.

А. Инерционность - сравнительно медленное возникновение возбуждения всего комплекса нейронов центра при поступлении к нему импульсов и медленное исчезновение возбуждения нейронов центра после прекращения входной импульсации. Инерционность центров связана с суммацией возбуждения и последействием.

Явление суммации возбуждения в ЦНС открыл И. М. Сеченов (1868) в опыте на лягушке: раздражение конечности лягушки сла­быми редкими импульсами не вызывает реакции, а более частые раздражения такими же слабыми импульсами сопровождаются от­ветной реакцией - лягушка совершает прыжок. Различают времен­ную (последовательную) и пространственную суммацию (рис. 5.9).


Последействие - это продолжение возбуждения нервного цен­тра после прекращения поступления к нему импульсов по аффе­рентным нервным путям. Основной причиной последействия явля­ется циркуляция возбуждения по замкнутым нейронным цепям (см. рис. 5.8), которая может продолжаться минуты и даже часы.

Б. Фоновая активность нервных центров (тонус) объяс­няется: 1) спонтанной активностью нейронов ЦНС; 2) гумораль­ными влияниями биологически активных веществ (метаболиты, гормоны, медиаторы и др.), циркулирующих в крови и влияющих на возбудимость нейронов; 3) афферентной импульсацией от раз­личных рефлексогенных зон; 4) суммацией миниатюрных по­тенциалов, возникающих в результате спонтанного выделения квантов медиатора из аксонов, образующих синапсы на нейронах; 5) циркуляцией возбуждения в ЦНС. Значение фоновой актив­ности нервных центров заключается в обеспечении некоторого

исходного уровня деятельного состояния центра и эффекторов. Этот уровень может увеличиваться или уменьшаться в зависимос­ти от колебаний суммарной активности нейронов нервного цент­ра-регулятора.

В. Трансформация ритма возбуждения - это изменение числа импульсов, возникающих в нейронах центра на выходе относительно числа импульсов, поступающих на вход данного центра. Трансформация ритма возбуждения возможна как в сторону увеличения, так и в сторону уменьшения. Увеличению числа импульсов, возникающих в центре в ответ на афферентную импульсацию, способствуют иррадиация процесса возбуждения и последействие. Уменьшение числа импульсов в нервном центре объясняется снижением его возбудимости за счет процессов пре-и постсинаптического торможения, а также избыточным потоком афферентных импульсов. При большом потоке афферентных влияний, когда уже все нейроны центра или нейронного пула возбуждены, дальнейшее увеличение афферентных входов не увеличивает число возбужденных нейронов.

Г. Большая чувствительность ЦНС к изменениям внут­ренней среды, например, к изменению содержания глюкозы в кро­ви, газового состава крови, температуры, к вводимым с лечебной целью различным фармакологическим препаратам. В первую оче­редь реагируют синапсы нейронов. Особенно чувствительны ней­роны ЦНС к недостатку глюкозы и кислорода. При снижении со­держания глюкозы в 2 раза ниже нормы (до 50% от нормы) могут возникнуть судороги. Тяжелые последствия для ЦНС вызывает недостаток кислорода в крови. Прекращение кровотока всего лишь на 10 с приводит к очевидным нарушениям функций мозга, человек теряет сознание. Прекращение кровотока на 8-12 мин вызывает необратимые нарушения деятельности мозга - погибают многие нейроны, в первую очередь корковые, что ведет к тяжелым послед­ствиям.

Д. Пластичность нервных центров - способность нервных элементов к перестройке функциональных свойств. Основные про­явления пластичности следующие.

1. Синаптическое облегчение - это улучшение проведения в синапсах после короткого раздражения афферентных путей. Сте­пень выраженности облегчения возрастает с увеличением частоты импульсов, оно максимально, когда импульсы поступают с интер­валом в несколько миллисекунд.

Длительность синаптического облегчения зависит от свойств синапса и характера раздражения - после одиночных стимулов оно невелико, после раздражающей серии облегчение в ЦНС может


продолжаться от нескольких минут до нескольких часов. По-види­мому, главной причиной возникновения синаптического облегче­ния является накопление Са 2+ в пресинаптических окончаниях, поскольку Са 2+ , который входит в нервное окончание во время ПД, накапливается там, так как ионная помпа не успевает выводить его из нервного окончания. Соответственно увеличивается высвобож­дение медиатора при возникновении каждого импульса в нервном окончании, возрастает ВПСП. Кроме того, при частом использо­вании синапсов ускоряется синтез рецепторов и медиатора и ус­коряется мобилизация пузырьков медиатора, напротив, при редком использовании синапсов синтез медиаторов уменьшается - важ­нейшее свойство ЦНС. Поэтому фоновая активность нейронов спо­собствует возникновению возбуждения в нервных центрах. Зна­чение синаптического облегчения заключается в том, что оно создает предпосылки улучшения процессов переработки информа­ции на нейронах нервных центров, что крайне важно, например, для обучения в ходе выработки двигательных навыков, условных рефлексов.

2. Синаптическая депрессия - это ухудшение проведения в синапсах в результате длительной посылки импульсов, например, при длительном раздражении афферентного нерва (утомляемость центра). Утомляемость нервных центров продемонстрировал Н. Е. Введенский в опыте на препарате лягушки при многократном рефлекторном вызове сокращения икроножной мышцы с помощью раздражения п. тлЫаНз и п. регопеиз. В этом случае ритмическое раздражение одного нерва вызывает ритмические сокращения мыш­цы, приводящие к ослаблению силы ее сокращения вплоть до пол­ного отсутствия сокращения. Переключение раздражения на дру­гой нерв сразу же вызывает сокращение той же мышцы, что свидетельствует о локализации утомления не в мышце, а в цент­ральной части рефлекторной дуги (рис. 5.10). Ослабление реакции центра на афферентные импульсы выражается в снижении постси-наптических потенциалов. Оно объясняется расходованием меди­атора, накоплением метаболитов, в частности, закислением среды при длительном проведении возбуждения по одним и тем же ней­ронным цепям.

3. Доминанта - стойкий господствующий очаг возбуждения в ЦНС, подчиняющий себе функции других нервных центров. Доми­нанта - это более стойкий феномен облегчения. Явление доминан­ты открыл А. А. Ухтомский (1923) в опытах с раздражением двига­тельных зон большого мозга и наблюдением сгибания конечности животного. Как выяснилось, если раздражать корковую двигатель­ную зону на фоне избыточного повышения возбудимости другого

нервного центра, сгибания конечности может не произойти. Вместо^ сгибания конечности раздражение двигательной зоны вызывает ре­акцию тех эффекторов, деятельность которых контролируется гос­подствующим, т. е. доминирующим в данный момент в ЦНС, нерв­ным центром.

Доминантный очаг возбуждения обладает рядом особых свойств, главными из которых являются следующие: инерционность, стойкость, повышенная возбудимость, способность «притягивать» к себе ирра-диирующие по ЦНС возбуждения, способность оказывать.угнета­ющие влияния на центры-конкуренты и другие нервные центры.

Значение доминантного очага возбуждения в ЦНС заключает­ся в том, что на его базе формируется конкретная приспособитель­ная деятельность, ориентированная на достижение полезных ре­зультатов, необходимых для устранения причин, поддерживающих тот или иной нервный центр в доминантном состоянии. Напри­мер, на базе доминантного состояния центра голода реализуется пищедобывательное поведение, на базе доминантного состояния центра жажды запускается поведение, направленное на поиск воды. Успешное завершение данных поведенческих актов в ко­нечном итоге устраняет физиологические причины доминантно­го состояния центров голода или жажды. Доминантное состоя­ние центров ЦНС обеспечивает автоматизированное выполнение двигательных реакций.


4. Компенсация нарушенных функций после повреждения того или иного центра - также результат проявления пластичности ЦНС. Хорошо известны клинические наблюдения за больными, у которых после кровоизлияний в вещество мозга повреждались цен­тры регуляции мышечного тонуса и акта ходьбы. Тем не менее, со временем отмечалось, что парализованная конечность у больных постепенно начинает вовлекаться в двигательную активность, при этом нормализуется тонус ее мышц. Нарушенная двигательная функция частично, а иногда и полностью восстанавливается за счет большей активности сохранившихся нейронов и вовлечения в эту функцию других - «рассеянных» нейронов в коре большого мозга^с подобными функциями. Этому способствуют регулярные (настой­чивые, упорные) пассивные и активные движения.

ТОРМОЖЕНИЕ В ЦНС

Торможение - это активный нервный процесс, результатом которого является прекращение или ослабление возбуждения. Тор­можение вторично относительно процесса возбуждения, так как всегда возникает как следствие возбуждения.

Торможение в ЦНС открыл И. М. Сеченов (1863). В опыте на таламической лягушке он определял латентное время сгибатель-ного рефлекса при погружении задней конечности в слабый раствор серной кислоты. Было показано, что латентное время рефлекса зна­чительно увеличивается, если на зрительный бугор предваритель­но положить кристаллик поваренной соли. Открытие И. М. Се­ченова послужило толчком для дальнейших исследований торможения в ЦНС, при этом было открыто два механизма тормо­жения: пост- и пресинаптическое.

А. Постсинаптическое торможение возникает на постси-наптических мембранах нейрона в результате гиперполяризаци­онного постсинаптическрго потенциала, уменьшающего возбуди­мость нейрона, угнетающего его способность реагировать на возбуждающие влияния. По этой причине вызванный гиперполя­ризационный потенциал был назван тормозным постсинаптиче-ским потенциалом, ТПСП "(см. рис. 5.6). АмплитудаТПСП 1-5 мВ, он способен суммироваться.

Возбудимость клетки от ТПСП (гиперполяризационного постси-наптического потенциала) уменьшается потому, что увеличивается пороговый потенциал (МО, так как Е кр (критический уровень депо­ляризации, КУД) остается на прежнем уровне, а мембранный потен­циал (Е) возрастает. ТПСП возникает под влиянием и аминокисло-


Ты глицина, и ГАМК - гамма-аминомасляной кислоты. В спинном мозге глицин выделяется особыми тормозными клетками (клет­ками Реншоу) в синапсах, образуемых этими клетками на мембране нейрона-мишени. Действуя на ионотропный рецептор постсинапти-ческой мембраны, глицин увеличивает ее проницаемость для СГ, при этом СГ поступает в клетку согласно концентрационному градиенту вопреки электрическому градиенту, в результате чего развивается гиперполяризация. В безхлорной среде тормозная роль глицина не реализуется. Ареактивность нейрона к возбуждающим импуль­сам является следствием алгебраической суммации ТПСП и ВПСП, в связи с чем в зоне аксонного холмика не происходит депо­ляризации мембраны до критического уровня. При действии ГАМК на постсинаптическую мембрану ТПСП развивается в результате входа СГ в клетку или выхода К + из клетки. Концентрационные гра­диенты ионов К + в процессе развития торможения нейронов поддер­живаются Ыа/К-помпой, ионов СГ - СГ-помпой. Разновидности постсинаптического торможения представлены на рис. 5.11.




Б. Пресинаптическое торможение развивается в преси-наптических окончаниях. При этом мембранный потенциал и возбудимость исследуемых нейронов не изменяются либо реги­стрируется низкоамплитудный ВПСП, недостаточный для возникновения ПД (рис. 5.12). Возбуждение блокируется в преси» наптических окончаниях вследствие деполяризации их. В очаге де­поляризации нарушается процесс распространения возбужде­ния, следовательно, поступающие импульсы, не имея возможности пройти зону деполяризации в обычном количестве и обычной амп­литуды, не обеспечивают выделение медиатора в синаптическую щель в достаточном количестве, поэтому нейрон не возбуждается, его функциональное состояние, естественно, остается неизменным. Деполяризацию пресинаптической терминали вызывают специаль­ные тормозные вставочные клетки, аксоны которых образу-


ют синапсы на пресинаптических окончаниях аксона-мишени (см. рис 5.12). Торможение (деполяризация) после одного аффе­рентного залпа продолжается 300-400 мс, медиатором является гамма-аминомасляная кислота (ГАМК), которая действует на ГАМК-рецепторы.

Деполяризация является следствием повышения проницаемо­сти для СГ, в результате чего он выходит из клетки согласно элек­трическому градиенту. Это доказывает, что в составе мембран пресинаптических терминалей имеется хлорный насос, обеспечи­вающий транспорт СГ внутрь клетки вопреки электрическому гра­диенту.

Разновидности пресинаптического торможения изучены недостаточно. По-видимому, имеются те же варианты, что и для постсинаптического торможения. В частности, на рис. 5.12 пред­ставлено параллельное и латеральное пресинаптическое торможе­ние. Однако возвратное пресинаптическое торможение на уровне спинного мозга (по типу возвратного постсинаптического тормо­жения) у млекопитающих обнаружить не удалось, хотя у лягушек

оно выявлено.

В реальной действительности взаимоотношения возбуждающих и тормозных нейронов значительно сложнее, чем представлено на рис. 5.11 и 5.12, тем не менее все варианты пре- и постсинаптиче­ского торможений можно объединить в две группы: 1) когда бло­кируется собственный путь самим распространяющимся возбуж­дением с помощью вставочных тормозных клеток (параллельное и возвратное торможение) и 2) когда блокируются другие нервные элементы под влиянием импульсов от соседних возбуждающих ней­ронов с включением тормозных клеток (латеральное и прямое тор­можения). Поскольку тормозные клетки сами могут быть затормо­жены другими тормозными нейронами (торможение торможения), это может облегчить распространение возбуждения.


В. Роль торможения.

1. Оба известных вида торможения со всеми их разновидно­стями выполняют охранительную роль. Отсутствие торможе­ния привело бы к истощению медиаторов в аксонах нейронов и пре­кращению деятельности ЦНС.

2. Торможение играет важную роль в обработке поступаю­щей в ЦНС информации. Особенно ярко выражена эта роль у пре-синаптического торможения. Оно более точно регулирует процесс возбуждения, поскольку этим торможением могут быть заблоки­рованы отдельные нервные волокна. К одному возбуждающему ней­рону могут подходить сотни и тысячи импульсов по разным терми-налям. Вместе с тем, число дошедших до нейрона импульсов определяется пресинаптическим торможением. Торможение лате­ральных путей обеспечивает выделение существенных сигналов, из фона. Блокада торможения ведет к широкой иррадиации возбуж­дения и судорогам (например, при выключении пресинаптического торможения бикукулином).

3. Торможение является важным фактором обеспечения координационной деятельности ЦНС.

Каждая клеточка, система и внутренний орган представляют собой единое целое, чтобы обеспечить взаимодействие и слаженную работу всех органов, необходима центральная нервная система. Этот элемент организма представляется в виде структурно-функциональных единиц и ветвящихся от них отростков различной длины и предназначения.

ЦНС образована из нескольких составляющих – это головной и спинной мозг, взаимодействующие посредством периферического отдела нервной системы. Центральная нервная система человека ответственна за следующие чувства и ощущения:

  • органы слуха и зрения, восприятие звуков и света, реагирование на внешние возбудители;
  • обоняние и осязание, с помощью которых воспринимается внешний мир и окружающая среда;
  • эмоциональность, восприимчивость;
  • память и мыслительные процессы организма, интеллектуальная деятельность.

Структура мозга ЦНС состоит из серого и белого вещества. Серая субстанция представлена нервными клетками с ветвящимися отростками небольшого размера. Это вещество занимает центр спинного мозга, затрагивая спинномозговой канал. В головном же мозге серое вещество является главной составляющей коры, имея разрозненные образования в сущности белого цвета. Белый пласт расположен под серым и структурно сформировано из волокон, участвующих в формировании нервных пучков. Подобные связки пучков выстраивают нерв.

Оболочки ЦНС

Окружают центральную НС оболочки, каждая из которых отлична:

  1. Твердая – наружная. Именно это оболочка образована внутри черепной полости, а также внутри полого образования позвоночного столба.
  2. Паутинный покров. Эта оболочка оснащена нервными окончаниями и сосудами, располагается под наружной оболочкой.
  3. Сосудистая. Между второй и третьей оболочкой находится еще одна полость, пространство которой заполнено мозговым веществом. Сосудистая оболочка, исходя из названия, сформирована из совокупности артерий, капилляров, вен, которые выполняют функции кровеносных сосудов. Этот покров соединен с мозгом напрямую, проникая в его складки.

Головной мозг

Этот орган имеет несложную структуру и представлен следующими элементами: протяженное образование — ствол, малый мозг под названием мозжечок, который берет ответственность за тонус мышц, координацию и равновесие, а также большие полушария.

Основной элемент, который включает высшие центры, представляющие рассудок, умственные способности, речевые способности, — это полушария мозга. Каждое из них сформировано из ядра с серым веществом, белой оболочки и коры головного мозга, защищающей остальные пласты.

Мозжечок, который обеспечивает скоординированные действия, представлен серым веществом, оболочкой из белого вещества, и пластом серого, находящимся извне.

Ствол – часть, которая по слоям не имеет разделения, образована из одного массива, не делящегося на цвета. Эта часть непосредственно коммутирует с остальными и корректирует работу дыхания, систем кровообращения, движения и чувств.

Спинной мозг

Этот орган цилиндрической формы находится в недрах позвоночного столба, имеет защиту в виде костного образования ткани. Сам спинной мозг находится под оболочками.

Если посмотреть на орган в разрезе, можно увидеть серое вещество в виде бабочки или по форме напоминающую Н, сверху оно покрыто белой оболочкой. Некоторые из проводящих путей берут свое начало в белом веществе, а заканчивают в сером и наоборот. Множество волокон, находящихся в белом массиве оболочки, организовывают взаимодействие множества отделов серого вещества, находящихся в спинном мозге.

Функциональность ЦНС

Устройство любого индивидуума представлено множеством структур и органов, взаимодействующих между собой, но все они направлены на содействие нормальной жизнедеятельности устройства человека, его защите, поддержке, питании. Взаимосвязь систем между собой обеспечивает ЦНС. Именно она является регулятором процессов, которые протекают в организме, с ее помощью меняется направление работы, задается темп функционирования и обеспечение всех необходимых для этого условий.

Центральная нервная система выполняется ряд основных функций, без которых организм не сможет существовать:

  1. Интеграция. Происходит за счет объединения функций. Интеграция подразделяется на 3 формы:
  • нервная – объединение отделов ЦНС. К примеру, возьмем пищу, имеющую цвет и аромат, которая является условнорефлекторным раздражителем. В организме происходят различные рефлексы при виде пищи: выделяется слюна, вырабатывается желудочный сок. В данном конкретном случае можно наблюдать объединение поведенческих, питательных и телесных назначений;
  • гуморальная. Представляет собой объединение различных функций на основе жидких сред организма совместно с гормонами. К примеру, различные гормоны внутренних секреций имеют свойство воздействовать синхронно, лишь наращивая действие друг друга, но есть вариант последовательной выработки, когда один гормон наращивает действие другого. Заканчивается процесс активизацией ряда различных функций. Так, адреналин может развить учащение сердцебиения, повысить уровень глюкозы в крови, запустить вентиляцию легких и т.д.;
  • механическая. Эта форма необходима для выполнения конкретной функции, которая обеспечивает структурную целостность органа. Если какой-то из органов или частей тела травмируется, то образуются структурные изменения, что в дальнейшем приводит к сбою в работе всего организма.
  1. Корреляция. Она необходима для того, чтобы максимально эффективно образовать взаимосвязь между системами, внутренними органами и процессами, свести их воедино.
  2. Регуляция. Обеспечивая работу всей ЦНС, необходимо регулировать и вести контроль за основными показателями организма. Основа этой регуляции – это рефлексы, формирование и организация процессов, саморегуляция, благодаря которым организм приспосабливается к постоянно меняющимся внутренним условиям, окружающего мира. Протекает он формами, корректирующими по ходу действия, и питательными. Всевозможное воздействие оказывают и относящиеся к телу, и возбуждению нервные отростки.
  3. Координация. Синхронизация и согласованность действий всех частей одной единой системы. Смена положения или позы, различные формы движения, перемещение в пространстве, приспособленность реакций на происходящее, трудовая деятельность, физическая активность – все эти составляющие должны быть четко скоординированы и направлены ЦНС.
  4. Связь с окружающей средой. ЦНС – это центр, образующий связь и передачу данных из окружающего мира в органы и системы организма для последующих скоординированных действий.
  5. Познавательность и приспособление. Чтобы адаптироваться к определенным обстоятельствам, подобрать нужную в этот момент модель поведения в особых ситуациях, подстроиться под деятельность, необходима эта функция ЦНС. С помощью этой системы обеспечивается комфортную адаптацию к окружающим человека обстоятельствам.

Возможные проблемы


Поражение и сбои в функционировании ЦНС — это не редкостью, а потому могут возникать по различным причинам:

  • генетическая предрасположенность, врожденные пороки и нарушения;
  • травмы или механические повреждения;
  • воспалительные процессы;
  • вирусные инфекции;
  • опухолевые образования, онкология;
  • нарушение кровообращения, патологии сосудов и пр.

Зачастую эти патологические изменения появляются еще в утробе матери, потому как на плод может воздействовать множество негативных факторов:

  • инфекционные заболевания женщины во время беременности, которые были не долечены или не вовремя выявлены;
  • травмы, в т.ч. во время сложных родов;
  • радиоактивное облучение;
  • токсическое воздействие, интоксикация;
  • воздействие алкоголя или наркотических веществ.

Наследственность таит в себя наибольшую опасность, особенно важно бережно относиться к беременности в первые месяцы беременности, ведь именно в этот период женский организм подвержен изменениям и формирует нервная система ребенка. У плода может развиться гидроцефалия или микроцефалия, которые чреваты опасными последствиями, и потребуют длительного и дорогостоящего лечения в будущем. А также могут сделать ребенка инвалидом на всю жизнь.

Строение ЦНС имеет множество сложностей и ответственных за работу частей. Поэтому любые даже незначительные отклонения от нормы могут послужить препятствием для полноценной работы всего организма. Именно поэтому необходимо прислушиваться к своему организму, своевременно распознавать его сигналы об опасности, и устранять неполадки и сбои в работе и взаимодействии отдельных частей.

Важно правильно распланировать день, грамотно распределить ресурсы организма, выделить время на полноценный отдых и сон. Немаловажную роль играет рацион питания, который должен быть сбалансированным и натуральным. Ежедневно дышать свежим воздухом и выполнять несложные физические упражнения, которые помогут поддерживать тело в форме, а организм — в гармонии.

Основной частью нервной системы позвоночных животных и человека является ЦНС. Она представлена головным и спинным мозгом и состоит из множества скоплений нейронов и их отростков. Центральная нервная система выполняет множество важнейших функций, главная из которых - осуществление различных рефлексов.

Что такое ЦНС?

По мере эволюционирования регуляция и координация всех жизненно важных процессов организма начала происходить на совершенно новом уровне. Усовершенствованные механизмы стали обеспечивать очень быструю ответную реакцию на любые изменения во внешней среде. Кроме того, они начали запоминать воздействия на организм, происходившие в прошлом, и при необходимости извлекать эту информацию. Подобные механизмы и образовали нервную систему, которая появилась у человека и позвоночных животных. Она разделяется на центральную и периферическую.

Итак, что такое ЦНС? Это основной отдел, который не только объединяет, но и координирует работу всех органов и систем, а также обеспечивает непрерывное взаимодействие с внешней средой и поддерживает нормальную психическую деятельность.

Структурная единица

Подобный путь включает:

  • сенсорный рецептор;
  • афферентный, ассоциативный, эфферентный нейроны;
  • эффектор.

Все реакции подразделяются на 2 вида:

  • безусловные (врожденные);
  • условные (приобретенные).

Нервные центры большего числа рефлексов находятся в ЦНС, но реакции, как правило, замыкаются за ее пределами.

Координационная деятельность

Это важнейшая функция центральной нервной системы, подразумевающая регуляцию процессов торможения и возбуждения в структурах нейронов, а также выполнение ответных реакций.

Координационная деятельность необходима для того, чтобы организм мог совершать сложные движения, в которых задействованы многочисленные мышцы. Примеры: осуществление гимнастических упражнений; речь, сопровождающаяся артикуляцией; процесс глотания пищи.

Патологии

Стоит отметить, что ЦНС - такая система, нарушения в работе которой негативно сказываются на функционировании всего организма. Любой сбой представляет опасность для здоровья. Поэтому при появлении первых тревожных симптомов необходимо обратиться к врачу.

Основными видами заболеваний ЦНС являются:

  • сосудистые;
  • хронические;
  • наследственные;
  • инфекционные;
  • полученные в результате травм.

В настоящее время известно около 30-ти патологий этой системы. К наиболее распространенным заболеваниям ЦНС относятся:

  • инсомния;
  • Болезнь Альцгеймера;
  • детский церебральный паралич;
  • Болезнь Паркинсона;
  • мигрень;
  • люмбаго;
  • менингит;
  • миастения;
  • ишемический инсульт;
  • невралгия;
  • рассеянный склероз;
  • энцефалит.

Патологии ЦНС возникают вследствие поражений какого-либо ее отдела. Каждый из недугов имеет уникальную симптоматику и требует индивидуального подхода к выбору метода лечения.

В заключение

Задача центральной нервной системы - обеспечить согласованную работу каждой клетки организма, а также его взаимодействие с внешним миром. Краткая характеристика ЦНС: она представлена головным и спинным мозгом, ее структурной единицей является нейрон, а главным принципом ее деятельности - рефлекторный. Любые нарушения в работе ЦНС неизбежно ведут к сбоям в функционировании всего организма.


Основные функции центральной нервной системы, наряду с периферической являющейся частью общей НС человека, – проводниковая, рефлекторная и контролирующая. Высшим отделом ЦНС, так называемым «главным центром» НС позвоночных является кора больших полушарий мозга – ещё в XIX веке русский физиолог И. П. Павлов дал определение её деятельности как «высшей».

Что составляет центральную нервную систему человека

Из каких частей состоит центральная нервная система человека и в чем заключаются её функции?

В строение центральной нервной системы (ЦНС) входят головной и спинной мозг. В их толще отчетливо определяются участки серого цвета (серое вещество), такой вид имеют скопления тел нейронов, и белое вещество, образованное отростками нервных клеток, посредством которых они устанавливают связи между собой. Количество нейронов спинного и головного мозга центральной нервной системы и степень их концентрации значительно выше в верхнем отделе, который в результате принимает вид объемного головного мозга.

Спинной мозг центральной нервной системы состоит из серого и белого вещества, а в центре его проходит канал, заполненный спинномозговой жидкостью.

Головной мозг центральной нервной системы состоит из нескольких отделов. Обычно различают задний мозг (в него входят продолговатый мозг, соединяющий спинной и головной мозг, мост и мозжечок), средний мозг и передний мозг, образованный промежуточным мозгом и большими полушариями.

Посмотрите, что составляет нервную систему, на фото, представленных на этой странице.

Спиной и головной мозг в составе центральной нервной системы

Здесь описано строение и функции частей центральной нервной системы: спинного и головного мозга.

Спинной мозг похож на длинный шнур, образованный нервной тканью, и находится в позвоночном канале: сверху спинной мозг переходит в продолговатый мозг, а внизу оканчивается на уровне 1-2-го поясничного позвонка.

Многочисленные спинномозговые нервы, отходящие от спинного мозга, связывают его с внутренними органами и конечностями. Его функции в составе центральной нервной системы - рефлекторная и проводниковая. Спиной мозг связывает головной мозг с органами тела, регулирует работу внутренних органов, обеспечивает движение конечностей и туловища и находится под контролем головного мозга.

Тридцать одна пара спинномозговых нервов выходит из спинного мозга и иннервирует все части тела, кроме лица. Все мышцы конечностей и внутренних органов иннервируют несколько спинномозговых нервов, что увеличивает шансы на сохранение функции в случае поражения одного из нервов.

Большие полушария являются самым крупным отделом головного мозга. Различают правое и левое полушария. Они состоят из коры, образованной серым веществом, поверхность которого испещрена извилинами и бороздами, и отростков нервных клеток белого вещества. С деятельностью коры полушарий связаны процессы, отличающие человека от животных: сознание, память, мышление, речь, трудовая деятельность. По названиям костей черепа, к которым прилегают различные части больших полушарий, головной мозг делят на доли: лобные, теменные, затылочные и височные.

Очень важный отдел головного мозга, отвечающий за согласованность движений и равновесие тела, - мозжечок - расположен в затылочной части головного мозга над продолговатым мозгом. Его поверхность характеризуется наличием множества складок, извилин и борозд. В мозжечке различают среднюю часть и боковые отделы - полушария мозжечка. Мозжечок соединен со всеми отделами ствола головного мозга.

Головной мозг, входящий в строение центральной нервной системы человека, контролирует и руководит работой органов человека. Так, например, в продолговатом мозге находятся дыхательный и сосудодвигательный центры. Быструю ориентацию при световых и звуковых раздражениях обеспечивают центры, находящиеся в среднем мозге.

Промежуточный мозг участвует в формировании ощущений. В коре больших полушарий находится ряд зон: так, в кожно-мышечной зоне воспринимаются импульсы, поступающие от рецепторов кожи, мышц, суставных сумок, и формируются сигналы, регулирующие произвольные движения. В затылочной доле коры больших полушарий расположена зрительная зона, воспринимающая зрительные раздражения. В височной доле находится слуховая зона. На внутренней поверхности височной доли каждого полушария расположены вкусовая и обонятельная зоны. И наконец, в коре головного мозга находятся участки, свойственные только человеку и отсутствующие у животных. Это зоны, контролирующие речь.

Двенадцать пар черепно-мозговых нервов выходят из мозга, главным образом из ствола головного мозга. Некоторые из них являются только двигательными нервами, например глазодвигательный нерв, ответственный за определенные движения глаз. Существуют и только чувствительные, например обонятельный и глазной нервы, ответственные соответственно за запах и зрение. Наконец, некоторые черепные нервы имеют смешанное строение, как лицевой нерв. Лицевой нерв контролирует движения лица и играет роль в чувстве вкуса. Черепные нервы главным образом иннервируют голову и шею, за исключением блуждающего нерва, связанного с парасимпатической нервной системой, которая регулирует пульс, дыхание и деятельность пищеварительной системы.

Статья прочитана 13 116 раз(a).

Центральная нервная система (ЦНС) - основная часть нервной системы животных и человека, состоящая из скопления нервных клеток (нейронов) и их отростков.

Центральная нервная система состоит из головного и спинного мозга и их защитных оболочек. Самой наружной является твердая мозговая оболочка, под ней расположена паутинная (арахноидальная), а затем мягкая мозговая оболочка, сращенная с поверхностью мозга. Между мягкой и паутинной оболочками находится подпаутинное (субарахноидальное) пространство, содержащее спинномозговую (цереброспинальную) жидкость, в которой как головной, так и спинной мозг буквально плавают. Действие выталкивающей силы жидкости приводит к тому, что, например, головной мозг взрослого человека, имеющий массу в среднем 1500 г, внутри черепа реально весит 50-100 г. Мозговые оболочки и спинномозговая жидкость играют также роль амортизаторов, смягчающих всевозможные удары и толчки, которые испытывает тело и которые могли бы привести к повреждению нервной системы.

ЦНС образована из серого и белого вещества. Серое вещество составляют тела клеток, дендриты и немиелинизированные аксоны, организованные в комплексы, которые включают бесчисленное множество синапсов и служат центрами обработки информации, обеспечивая многие функции нервной системы. Белое вещество состоит из миелинизированных и немиелинизированных аксонов, выполняющих роль проводников, передающих импульсы из одного центра в другой. В состав серого и белого вещества входят также клетки глии. Нейроны ЦНС образуют множество цепей, которые выполняют две основные функции: обеспечивают рефлекторную деятельность, а также сложную обработку информации в высших мозговых центрах. Эти высшие центры, например зрительная зона коры (зрительная кора), получают входящую информацию, перерабатывают ее и передают ответный сигнал по аксонам.

Результат деятельности нервной системы - та или иная активность, в основе которой лежит сокращение или расслабление мышц либо секреция или прекращение секреции желез. Именно с работой мышц и желез связан любой способ нашего самовыражения. Поступающая сенсорная информация подвергается обработке, проходя последовательность центров, связанных длинными аксонами, которые образуют специфические проводящие пути, например болевые, зрительные, слуховые. Чувствительные (восходящие) проводящие пути идут в восходящем направлении к центрам головного мозга. Двигательные (нисходящие) пути связывают головной мозг с двигательными нейронами черепно-мозговых и спинномозговых нервов. Проводящие пути обычно организованы таким образом, что информация (например, болевая или тактильная) от правой половины тела поступает в левую часть мозга и наоборот. Это правило распространяется и на нисходящие двигательные пути: правая половина мозга управляет движениями левой половины тела, а левая половина - правой. Из этого общего правила, однако, есть несколько исключений.

Состоит из трех основных структур: больших полушарий, мозжечка и ствола.

Большие полушария - самая крупная часть мозга - содержат высшие нервные центры, составляющие основу сознания, интеллекта, личности, речи, понимания. В каждом из больших полушарий выделяют следующие образования: лежащие в глубине обособленные скопления (ядра) серого вещества, которые содержат многие важные центры; расположенный над ними крупный массив белого вещества; покрывающий полушария снаружи толстый слой серого вещества с многочисленными извилинами, составляющий кору головного мозга.

Мозжечок тоже состоит из расположенного в глубине серого вещества, промежуточного массива белого вещества и наружного толстого слоя серого вещества, образующего множество извилин. Мозжечок обеспечивает главным образом координацию движений.

Ствол мозга образован массой серого и белого вещества, не разделенной на слои. Ствол тесно связан с большими полушариями, мозжечком и спинным мозгом и содержит многочисленные центры чувствительных и двигательных проводящих путей. Первые две пары черепно-мозговых нервов отходят от больших полушарий, остальные же десять пар - от ствола. Ствол регулирует такие жизненно важные функции, как дыхание и кровообращение.

Находящийся внутри позвоночного столба и защищенный его костной тканью спинной мозг имеет цилиндрическую форму и покрыт тремя оболочками. На поперечном срезе серое вещество имеет форму буквы Н или бабочки. Серое вещество окружено белым веществом. Чувствительные волокна спинномозговых нервов заканчиваются в дорсальных (задних) отделах серого вещества - задних рогах (на концах Н, обращенных к спине). Тела двигательных нейронов спинномозговых нервов расположены в вентральных (передних) отделах серого вещества - передних рогах (на концах Н, удаленных от спины). В белом веществе проходят восходящие чувствительные проводящие пути, заканчивающиеся в сером веществе спинного мозга, и нисходящие двигательные пути, идущие от серого вещества. Кроме того, многие волокна в белом веществе связывают различные отделы серого вещества спинного мозга.

Главная и специфическая функция ЦНС - осуществление простых и сложных высокодифференцированных отражательных реакций, получивших название рефлексов. У высших животных и человека низшие и средние отделы ЦНС - спинной мозг, продолговатый мозг, средний мозг, промежуточный мозг и мозжечок - регулируют деятельность отдельных органов и систем высокоразвитого организма, осуществляют связь и взаимодействие между ними, обеспечивают единство организма и целостность его деятельности. Высший отдел ЦНС - кора больших полушарий головного мозга и ближайшие подкорковые образования - в основном регулирует связь и взаимоотношения организма как единого целого с окружающей средой.

Основные черты строения и функции ЦНС связана со всеми органами и тканями через периферическую нервную систему, которая у позвоночных включает черепно-мозговые нервы, отходящие от головного мозга, и спинномозговые нервы - от спинного мозга, межпозвонковые нервные узлы, а также периферический отдел вегетативной нервной системы - нервные узлы, с подходящими к ним (преганглионарными) и отходящими от них (постганглионарными) нервными волокнами.

Чувствительные, или афферентные, нервные приводящие волокна несут возбуждение в ЦНС от периферических рецепторов; по отводящим эфферентным (двигательным и вегетативным) нервным волокнам возбуждение из ЦНС направляется к клеткам исполнительных рабочих аппаратов (мышцы, железы, сосуды и т. д.). Во всех отделах ЦНС имеются афферентные нейроны, воспринимающие приходящие с периферии раздражения, и эфферентные нейроны, посылающие нервные импульсы на периферию к различным исполнительным эффекторным органам.

Афферентные и эфферентные клетки своими отростками могут контактировать между собой и составлять двухнейронную рефлекторную дугу, осуществляющую элементарные рефлексы (например, сухожильные рефлексы спинного мозга). Но, как правило, в рефлекторной дуге между афферентными и эфферентными нейронами расположены вставочные нервные клетки, или интернейроны. Связь между различными отделами ЦНС осуществляется также с помощью множества отростков афферентных, эфферентных и вставочных нейронов этих отделов, образующих внутрицентральные короткие и длинные проводящие пути. В состав ЦНС входят также клетки нейроглии, которые выполняют в ней опорную функцию, а также участвуют в метаболизме нервных клеток.

К каким докторам обращаться для обследования Центральной нервной системы:

Невролог

Нейрохирург